Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 456

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Recent status of the cryogenic sample environment at the MLF, J-PARC

Ishikado, Motoyuki*; Takahashi, Ryuta*; Yamauchi, Yasuhiro*; Nakamura, Masatoshi*; Ishimaru, Sora*; Yamauchi, Sara*; Kawamura, Seiko; Kira, Hiroshi*; Sakaguchi, Yoshifumi*; Watanabe, Masao; et al.

JPS Conference Proceedings (Internet), 41, p.011010_1 - 011010_7, 2024/05

Journal Articles

A Science-based mixed oxide property model for developing advanced oxide nuclear fuels

Kato, Masato; Oki, Takumi; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.; Ozawa, Takayuki; Uwaba, Tomoyuki; Ikusawa, Yoshihisa; Nakamura, Hiroki; Machida, Masahiko

Journal of the American Ceramic Society, 107(5), p.2998 - 3011, 2024/05

 Times Cited Count:0 Percentile:0.01(Materials Science, Ceramics)

Journal Articles

The Role of collision ionization of K-shell ions in nonequilibrium plasmas produced by the action of super strong, ultrashort PW-class laser pulses on micron-scale argon clusters with intensity up to 5 $$times$$ 10$$^{21}$$ W/cm$$^{2}$$

Skobelev, I. Yu.*; Ryazantsev, S. N.*; Kulikov, R. K.*; Sedov, M. V.*; Filippov, E. D.*; Pikuz, S. A.*; Asai, Takafumi*; Kanasaki, Masato*; Yamauchi, Tomoya*; Jinno, Satoshi; et al.

Photonics (Internet), 10(11), p.1250_1 - 1250_11, 2023/11

 Times Cited Count:0 Percentile:0(Optics)

It is challenging to clearly distinguish the impacts of the optical field and collisional ionization in the evolution of the charge state of a plasma produced when matter interacts with high-intensity laser pulses. In this work, time-dependent calculations of plasma kinetics are used to show that it is possible only when low-density gaseous targets with sufficiently small clusters are used. In the case of Ar plasma, the upper limit of the cluster radius was estimated to be $$R_0 = 0.1 mu$$m.

Journal Articles

Incommensurate nature of the antiferromagnetic order in GdCu$$_2$$

Kaneko, Koji; Tabata, Chihiro; Hagihara, Masato; Yamauchi, Hiroki; Kubota, Masato; Osakabe, Toyotaka; Onuki, Yoshichika*

Journal of the Physical Society of Japan, 92(8), p.085001_1 - 085001_2, 2023/08

 Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)

Journal Articles

Local electronic structure of interstitial hydrogen in MgH$$_2$$ inferred from muon study

Kadono, Ryosuke*; Hiraishi, Masatoshi*; Okabe, Hirotaka*; Koda, Akihiro*; Ito, Takashi

Journal of Physics; Condensed Matter, 35(28), p.285503_1 - 285503_13, 2023/07

 Times Cited Count:0 Percentile:0(Physics, Condensed Matter)

Journal Articles

Cavitation damage prediction in mercury target for pulsed spallation neutron sources by Monte Carlo simulation

Wakui, Takashi; Takagishi, Yoichi*; Futakawa, Masatoshi; Tanabe, Makoto*

Jikken Rikigaku, 23(2), p.168 - 174, 2023/06

Cavitation damage on the inner surface of the mercury target for the spallation neutron source occurs by proton bombarding in mercury. The prediction method of the cavitation damage using Monte Carlo simulations was suggested taking variability of the bubble core position and impact pressure distribution into account. The impact pressure distribution was estimated using the inverse analysis with Bayesian optimization was conducted with comparison between cavitation damage distribution obtained from experiment and the cumulative plastic strain distribution obtained from simulation. The average value and spread of maximum impact pressure estimated assuming the Gaussian distribution were 3.1 GPa and 1.2 $$mu$$m, respectively. Simulation results reproduced experimental results and it can be said that this evaluation method is useful.

Journal Articles

Nature of the physicochemical process in water photolysis uncovered by a computer simulation

Kai, Takeshi; Toigawa, Tomohiro; Ukai, Masatoshi*; Fujii, Kentaro*; Watanabe, Ritsuko*; Yokoya, Akinari*

Journal of Chemical Physics, 158(16), p.164103_1 - 164103_8, 2023/04

New insight into water radiolysis and photolysis is indispensable in the dramatic progress of sciences and technologies in various research areas. In the radiation field, reactive hydrated electrons are considerably produced along radiation tracks. Although the formation results from a transient dynamic correlation between ejected electrons and water, the individual mechanisms of electron thermalization, delocalization, and polarization are unknown. Using a dynamic Monte Carlo code, we show herein that the ejected electrons are immediately delocalized by molecular excitations in parallel with phonon polarization and gradually thermalized by momentum transfer with an orientation polarization in a simultaneous manner. Our results show that these mechanisms heavily depend on the intermolecular vibration and rotation modes peculiar to water. We expect our approach to be a powerful technique for connecting physical and chemical processes in various solvents.

Journal Articles

Machine learning sintering density prediction model for MOX fuel pellet

Kato, Masato; Nakamichi, Shinya; Hirooka, Shun; Watanabe, Masashi; Murakami, Tatsutoshi; Ishii, Katsunori

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 22(2), p.51 - 58, 2023/04

Uranium and Plutonium mixed oxide (MOX) pellets used as fast reactor fuels have been produced from several raw materials by mechanical blending method through processes of ball milling, additive blending, granulation, pressing, sintering and so on. It is essential to control the pellet density which is one of the important fuel specifications, but it is difficult to understand relationships among many parameters in the production. Database for MOX production was prepared from production results in Japan, and input data of eighteen types were chosen from production process and made a data set. Machine learning model to predict sintered density of MOX pellet was derived by gradient boosting regressor, and represented the measured sintered density with coefficient of determination of R$$^{2}$$=0.996

Journal Articles

Spin gap in the weakly interacting quantum spin chain antiferromagnet KCuPO$$_{4}$$$$cdot$$H$$_{2}$$O

Fujihara, Masayoshi; Hagihara, Masato; Morita, Katsuhiro*; Murai, Naoki; Koda, Akihiro*; Okabe, Hirotaka*; Mitsuda, Setsuo*

Physical Review B, 107(5), p.054435_1 - 054435_8, 2023/02

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

The $$S$$ = 1/2 Heisenberg linear chain antiferromagnet is the simplest spin model; nevertheless it serves as a platform for various quantum many-body phenomena. Here, we report the magnetic behavior of a quasi-one-dimensional antiferromagnet KCuPO$$_{4}$$$$cdot$$H$$_{2}$$O. A long-range commensurate antiferromagnetic order with ordered moment 0.31(1) $$mu_{rm{B}}$$ per spin occurs at $$T_{rm{N}}$$ = 11.7(1) K. Above $$T_{rm{N}}$$, the inelastic neutron excitation is characterized by a two spinon continuum. The intrachain interaction $$J$$ and interchain interaction $$|J'|$$ are estimated to be 172 K and 4.25(4) K, respectively; thus the ratio of the $$|J'|$$/$$J$$ = 0.0247(3). At lower energies, below $$T_{rm{N}}$$, a spin gap is observed in the dispersive excitations. These results are consistent with characteristics observed in weakly interacting $$S$$ = 1/2 Heisenberg chain system.

Journal Articles

Breaking the hard-sphere model with fluorite and antifluorite solid solutions

Vauchy, R.; Hirooka, Shun; Watanabe, Masashi; Kato, Masato

Scientific Reports (Internet), 13, p.2217_1 - 2217_8, 2023/02

 Times Cited Count:6 Percentile:93.59(Multidisciplinary Sciences)

Journal Articles

Oxygen potential, oxygen diffusion, and defect equilibria in UO$$_{2 pm x}$$

Watanabe, Masashi; Kato, Masato

Frontiers in Nuclear Engineering (Internet), 1, p.1082324_1 - 1082324_9, 2023/01

Since the oxygen potential and the oxygen coefficient of UO$$_{2}$$ have a significant impact on fuel performance, many experimental data have been obtained. However, experimental data of the oxygen potential and the oxygen diffusion coefficient in the high temperature region above 1673 K are very limited. In the present study, we aimed to obtain these data and analyze them by defect chemistry. The oxygen potentials and the oxygen chemical diffusion coefficient of UO$$_{2}$$ were measured by the gas equilibrium method in the near stoichiometric region at temperatures ranging from 1673 to 1873 K. A data set of oxygen potentials was made together with literature data and analyzed by defect chemistry. The oxygen potential of UO$$_{2}$$ was determined as a function of O/U ratio and temperature, and an equation representing the relationship was derived. The oxygen chemical diffusion coefficient values obtained in this study were reasonably close to the literature values. The oxygen partial pressure dependence of the oxygen chemical diffusion coefficients was predicted from the evaluated results of the oxygen potential data, but no clear dependence was observed.

Journal Articles

Oxygen diffusion in the fluorite-type oxides CeO$$_{2}$$, ThO$$_{2}$$, UO$$_{2}$$, PuO$$_{2}$$, and (U, Pu)O$$_{2}$$

Kato, Masato; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.

Frontiers in Nuclear Engineering (Internet), 1, p.1081473_1 - 1081473_10, 2023/01

Journal Articles

Materials science and fuel technologies of uranium and plutonium mixed oxide

Kato, Masato; Machida, Masahiko; Hirooka, Shun; Nakamichi, Shinya; Ikusawa, Yoshihisa; Nakamura, Hiroki; Kobayashi, Keita; Ozawa, Takayuki; Maeda, Koji; Sasaki, Shinji; et al.

Materials Science and Fuel Technologies of Uranium and Plutonium mixed Oxide, 171 Pages, 2022/10

Innovative and advanced nuclear reactors using plutonium fuel has been developed in each country. In order to develop a new nuclear fuel, irradiation tests are indispensable, and it is necessary to demonstrate the performance and safety of nuclear fuels. If we can develop a technology that accurately simulates irradiation behavior as a technology that complements the irradiation test, the cost, time, and labor involved in nuclear fuel research and development will be greatly reduced. And safety and reliability can be significantly improved through simulation of nuclear fuel irradiation behavior. In order to evaluate the performance of nuclear fuel, it is necessary to know the physical and chemical properties of the fuel at high temperatures. And it is indispensable to develop a behavior model that describes various phenomena that occur during irradiation. In previous research and development, empirical methods with fitting parameters have been used in many parts of model development. However, empirical techniques can give very different results in areas where there is no data. Therefore, the purpose of this study is to construct a scientific descriptive model that can extrapolate the basic characteristics of fuel to the composition and temperature, and to develop an irradiation behavior analysis code to which the model is applied.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:6 Percentile:84.97(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Measurements of thermal conductivity for near stoichiometric (U$$_{0.7-z}$$Pu$$_{0.3}$$Am$$_{z}$$)O$$_{2}$$ (z = 0.05, 0.10, and 0.15)

Yokoyama, Keisuke; Watanabe, Masashi; Tokoro, Daishiro*; Sugimoto, Masatoshi*; Morimoto, Kyoichi; Kato, Masato; Hino, Tetsushi*

Nuclear Materials and Energy (Internet), 31, p.101156_1 - 101156_7, 2022/06

 Times Cited Count:3 Percentile:68.71(Nuclear Science & Technology)

In current nuclear fuel cycle systems, to reduce the amount of high-level radioactive waste, minor actinides (MAs) bearing MOX fuel is one option for burning MAs using fast reactor. However, the effects of Am content in fuel on thermal conductivity are unclear because there are no experimental data on thermal conductivity of high Am bearing MOX fuel. In this study, The thermal conductivities of near stoichiometric (U$$_{0.7-z}$$Pu$$_{0.3}$$Am$$_{z}$$)O$$_{2}$$ solid solutions(z = 0.05, 0.10, and 0.15) have been measured between room temperature (RT) and 1473 K. The thermal conductivities decreased with increasing Am content and satisfied the classical phonon transport model ((A+BT)$$^{-1}$$) up to about 1473 K. A values increased linearly with increasing Am content because the change in ionic radius affects the conduction of the phonon due to the solid solution in U$$^{5+}$$ and Am$$^{3+}$$. B values were independent of Am content.

Journal Articles

A Storm-induced flood and associated nearshore dispersal of the river-derived suspended $$^{137}$$Cs

Uchiyama, Yusuke*; Tokunaga, Natsuki*; Azuma, Kohei*; Kamidaira, Yuki; Tsumune, Daisuke*; Iwasaki, Toshiki*; Yamada, Masatoshi*; Tateda, Yutaka*; Ishimaru, Takashi*; Ito, Yukari*; et al.

Science of the Total Environment, 816, p.151573_1 - 151573_13, 2022/04

 Times Cited Count:7 Percentile:68.71(Environmental Sciences)

no abstracts in English

Journal Articles

Defect equilibria and thermophysical properties of CeO$$_{2-x}$$ based on experimental data and density functional theory calculation result

Watanabe, Masashi; Nakamura, Hiroki; Suzuki, Kiichi; Machida, Masahiko; Kato, Masato

Journal of the American Ceramic Society, 105(3), p.2248 - 2257, 2022/03

 Times Cited Count:1 Percentile:6.98(Materials Science, Ceramics)

Properties of CeO$$_{2}$$ were evaluated by DFT simulation to determine band gap, Frenkel defect formation energy and defect migration energy. Band gap and Frenkel defect formation energy were used to analyze defect equilibria. Oxygen partial pressure dependence of defect equilibria was evaluated based on oxygen potential experimental data and DFT calculation, and a Brouwer diagram was derived. The defect formation energies, including Frenkel defect, electron-hole pair and so on, were determined and used to evaluate the properties, including oxygen diffusion coefficients, electrical conduction, heat capacity and thermal conductivity. Mechanisms of various properties were discussed for a deeper understanding based on defect chemistry, and the relationship among properties were systematically described.

Journal Articles

Contrasting magnetic structures in SrLaCuSbO$$_{6}$$ and SrLaCuNbO$$_{6}$$; Spin-$$frac{1}{2}$$ quasi-square-lattice $$J_{1}$$-$$J_{2}$$ Heisenberg antiferromagnets

Watanabe, Masari*; Kurita, Nubuyuki*; Tanaka, Hidekazu*; Ueno, Wataru*; Matsui, Kazuki*; Goto, Takayuki*; Hagihara, Masato

Physical Review B, 105(5), p.054414_1 - 054414_12, 2022/02

 Times Cited Count:4 Percentile:59.24(Materials Science, Multidisciplinary)

Journal Articles

Assessment of radiation doses to off-site responders in TEPCO Fukushima Daiichi Nuclear Power Station Accident

Shimada, Kazumasa; Iijima, Masashi*; Watanabe, Masatoshi*; Takahara, Shogo

Proceedings of Asian Symposium on Risk Assessment and Management 2021 (ASRAM 2021) (Internet), 17 Pages, 2021/10

The radiation doses received by the off-site responders in the Fukushima Daiichi Nuclear Power Station accident were assessed. Atmospheric dispersion simulation was conducted with the source term of the previous research to calculate the atmospheric concentration and ground surface deposition in the municipalities where off-site responders actives. The external exposure dose from cloudshine and groundshine, the internal exposure dose due to inhalation of radioactive plume and resuspended radio nuclei, and the temporal and spatial distribution within each municipality were assessed. As a result of comparing the assessed values of the external exposure dose with the measured values of the personal dosimeter, the measured values were within the assessed range. As a result of our assessment with internal dose exposure, if the exposures occurred without protective measures, the potential daily effective dose in the period between 12 and 31 March 2011 were several tens mSv per day or more in the relatively high dose area. Therefore, to keep the doses received by the responders below the reference level of 20 mSv recommended by the ICRP, it is necessary to ensure that the protective measures for internal exposures such as masks are taken, and to manage the time spent for their activity at least daily.

456 (Records 1-20 displayed on this page)