Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Tuning of ultra-slow muon transport system

Adachi, Taihei*; Ikedo, Yutaka*; Nishiyama, Kusuo*; Yabuuchi, Atsushi*; Nagatomo, Takashi*; Strasser, P.*; Ito, Takashi; Higemoto, Wataru; Kojima, Kenji*; Makimura, Shunsuke*; et al.

JPS Conference Proceedings (Internet), 8, p.036017_1 - 036017_4, 2015/09

Journal Articles

Design of a dipole magnet for the 3-GeV proton synchrotron of the JAERI/KEK joint project

Tani, Norio; Kanazawa, Kenichiro; Shimada, Taihei; Suzuki, Hiromitsu; Watanabe, Yasuhiro; Adachi, Toshikazu*; Someya, Hirohiko*

Proceedings of 8th European Particle Accelerator Conference (EPAC 2002), p.2376 - 2378, 2002/00

The 3-GeV synchrotron proposed in the JAERI/KEK Joint Project is a rapid-cycling synchrotron (RCS), which accelerates a high-intensity proton beam from 400 MeV to 3 GeV at a repetition rate of 25 Hz. The 3-GeV synchrotron is used to produce pulsed spallation neutrons and muons. It also works as an injector for a 50-GeV synchrotron. Since the magnets for the 3-GeV synchrotron are required to have a large aperture in order to realize the large beam power of 1 MW, there is a large leakage field at an end part than a usual synchrotron magnet. In addition, 25-Hz ac field induces an eddy current in magnet components: e.g. a coil, magnet end plates and etc. We intend to use a stranded conductor as a coil conductor so that the eddy current induced in the coil can be reduced. On the other hand, the eddy current induced in the end plates is expected to be large. Therefore, it is important to investigate an effect of the large leakage field and the eddy current to the beam motion around the magnet end part. We have constructed a prototype dipole magnet and field measurement system for this purpose. This paper reports the results of the design and the preliminary test about this magnet.

2 (Records 1-2 displayed on this page)
  • 1