Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tripathi, R.*; Adroja, D. T.*; Ritter, C.*; Sharma, S.*; Yang, C.*; Hillier, A. D.*; Koza, M. M.*; Demmel, F.*; Sundaresan, A.*; Langridge, S.*; et al.
Physical Review B, 106(6), p.064436_1 - 064436_17, 2022/08
Times Cited Count:7 Percentile:60.50(Materials Science, Multidisciplinary)Cai, Z.*; Bao, S.*; Wang, W.*; Ma, Z.*; Dong, Z.-Y.*; Shangguan, Y.*; Wang, J.*; Ran, K.*; Li, S.*; Kamazawa, Kazuya*; et al.
Physical Review B, 101(13), p.134408_1 - 134408_10, 2020/04
Times Cited Count:6 Percentile:32.40(Materials Science, Multidisciplinary)Dirac matters provide a platform for exploring the interplay of their carriers with other quantum phenomena. SrMn
Sb
has been proposed to be a magnetic Weyl semimetal and provides an excellent platform to study the coupling between Weyl fermions and magnons. We performed inelastic neutron scattering measurements on single crystals of Sr
Mn
Sb
, and found The dispersion in the magnetic Mn layer extends up to about 76 meV, while that between the layers has a narrow band width of 6 meV. Despite the coexistence of Weyl fermions and magnons, we find no clear evidence that the magnetic dynamics are influenced by the Weyl fermions in Sr
Mn
Sb
, possibly because that the Weyl fermions and magnons reside in the Sb and Mn layers separately, and the interlayer coupling is weak due to the quasi-two-dimensional nature of the material.
Lee, S.*; Park, J.-G.*; Adroja, D. T.*; Khomskii, D.*; Streltsov, S.*; McEwen, K. A.*; Sakai, Hironori; Yoshimura, Kazuyoshi*; Anisimov, V. I.*; Mori, Daisuke*; et al.
Nature Materials, 5(6), p.471 - 476, 2006/06
Times Cited Count:111 Percentile:94.42(Chemistry, Physical)Here we show that the three-dimensional cubic system of TlRu
O
most probably evolves into a one-dimensional spin-one Haldane system with a spin gap below 120 K, accompanied by anomalies in the structure, resistivity, and susceptibility. We argue that these anomalies are due to an orbital ordering of Ru
electrons, with a strong coupling among three degrees of freedom: orbital, spin, and lattice. Our work provides a unique example of the spontaneous formation of Haldane system with an insight into the intriguing interplay of different degrees of freedom.
Magnani, N.*; Caciuffo, R.*; Colineau, E.*; Wastin, F.*; Amoretti, G.*; Carretta, S.*; Santini, P.*; Baraldi, A.*; Capelletti, R.*; Adroja, D. T.*; et al.
no journal, ,
no abstracts in English