Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tsugawa, Kiyoto*; Hayakawa, Sho*; Okita, Taira*; Aichi, Masaatsu*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*
Computational Materials Science, 215, p.111806_1 - 111806_8, 2022/12
Times Cited Count:1 Percentile:42.81(Materials Science, Multidisciplinary)Tsugawa, Kiyoto*; Hayakawa, Sho*; Iwase, Yuki*; Okita, Taira*; Suzuki, Katsuyuki*; Itakura, Mitsuhiro; Aichi, Masaatsu*
Computational Materials Science, 210, p.111450_1 - 111450_9, 2022/07
Times Cited Count:5 Percentile:78.92(Materials Science, Multidisciplinary)Mori, Sho*; Matsuda, Nayuta*; Okita, Taira*; Aichi, Masaatsu*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*
Materialia, 21, p.101371_1 - 101371_6, 2022/03
Hayakawa, Sho*; Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Aichi, Masaatsu*; Suzuki, Katsuyuki*
Journal of Materials Science, 54(17), p.11509 - 11525, 2019/09
Times Cited Count:13 Percentile:59.41(Materials Science, Multidisciplinary)Hayakawa, Sho*; Okita, Taira*; Itakura, Mitsuhiro; Aichi, Masaatsu*; Suzuki, Katsuyuki*
Philosophical Magazine, 98(25), p.2311 - 2325, 2018/06
Times Cited Count:7 Percentile:43.08(Materials Science, Multidisciplinary)We conduct kinetic Monte Carlo simulations for the conservative climb motion of a cluster of self-interstitial atoms towards another SIA cluster in BCC Fe; the conservative climb velocity is inversely proportional to the fourth power of the distance between them, as per the prediction based on Einstein's equation. The size of the climbing cluster significantly affects its conservative climb velocity, while the size of the cluster that originates the stress field does not. The activation energy for the conservative climb is considerably greater than that derived in previous studies and strongly dependent on the climbing cluster size.
Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Aichi, Masaatsu*; Suzuki, Katsuyuki*
Philosophical Magazine, 98(22), p.2061 - 2076, 2018/05
Times Cited Count:18 Percentile:73.94(Materials Science, Multidisciplinary)In this study, molecular dynamics simulations were performed to elucidate the effects of stacking fault energy (SFE) on the physical interactions between an edge dislocation and a spherical void in the crystal structure of face-centred cubic metals at various temperatures and for different void sizes. Four different types of interaction morphologies were observed, in which (1) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the trailing partial; (2) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the leading partial; (3) the partial dislocations detached from the void almost simultaneously without jog formation; and (4) the partial dislocations detached from the void almost simultaneously with jog formation. With an increase in void size or SFE, the interaction morphology changed in the above-mentioned order. It was observed that the magnitude of the critical resolved shear stress (CRSS) and its dependence on the SFE were determined by these interaction morphologies. The value of the CRSS in the case of interaction morphology (1) is almost equal to an analytical one based on the linear elasticity by employing the Burgers vector of a single partial dislocation. The maximum value of the CRSS is also obtained by the analytical model with the Burgers vector of the two partial dislocations.
Toya, Naruhisa; Takeuchi, Ryuji; Tokunaga, Tomochika*; Aichi, Masaatsu*
Proceedings of 36th International Association of Hydrogeologists Congress 2008 (IAH 2008) (CD-ROM), 7 Pages, 2008/10
Excavation of the Mizunami Underground Research Laboratory began in 2003. In 2006-2007, several boreholes were drilled from the shafts and the gallery at GL-200m. Several monitoring boreholes are located in the vicinity of the NNW striking fault. The data from groundwater pressure monitoring obtained at multiple depth intervals during the drilling activities show unique responses, which resemble deformation-induced effects. In this study, we report the possible application of using these hydraulic responses for characterizing the hydrogeological structures of the site.