Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Aizawa, Kosuke; Ueki, Yoshitaka*
Proceedings of Specialist Workshop on Advanced Instrumentation and Measurement Techniques for Nuclear Reactor Thermal-Hydraulics and Severe Accidents (SWINTH-2024), 7 Pages, 2024/06
Early detection of an anomaly greatly enhances the safety of nuclear power plants. A detection system called an acoustic measurement has high responsiveness, because sound produced by the anomaly is transmitted from the place at which an anomaly has occurred to a measurement point at a speed of sound, and the acoustic measurement has the potential to directly detect the physical quantity of an anomaly at its occurrence point. For sodium-cooled fast reactors, we have been developing an anomaly detection technique using the acoustic measurement that offers these features. This paper clarifies issues in applying the acoustic measurement to a sodium-cooled fast reactor, how we solve the issues, and the current status of this research.
Mikami, Nao*; Ueki, Yoshitaka*; Shibahara, Masahiko*; Aizawa, Kosuke; Ara, Kuniaki*
International Journal of Multiphase Flow, 171, p.104688_1 - 104688_13, 2024/01
Times Cited Count:0 Percentile:0.00(Mechanics)Aizawa, Kosuke
Hozengaku, 22(3), p.70 - 71, 2023/10
no abstracts in English
Mikami, Nao*; Ueki, Yoshitaka*; Shibahara, Masahiko*; Aizawa, Kosuke; Ara, Kuniaki
Proceedings of 17th International Heat Transfer Conference (IHTC-17) (Internet), 9 Pages, 2023/08
Mikami, Nao*; Ueki, Yoshitaka*; Shibahara, Masahiko*; Aizawa, Kosuke; Ara, Kuniaki
Journal of Sound and Vibration, 561, p.117797_1 - 117797_14, 2023/05
Times Cited Count:1 Percentile:54.48(Acoustics)Aizawa, Kosuke; Hiyama, Tomoyuki; Kobayashi, Jun; Kurihara, Akikazu
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05
Self-actuated shutdown system (SASS) is a passive reactor-shutdown system that utilizes a Curie-point electromagnet (CPEM), which features the characteristic of loss in magnetism when the magnet temperature reaches the Curie point. A control rod with SASS is inserted into the core by gravity without recourse to any active shutdown system. To allow the SASS to effectively function, efficiently guiding high-temperature fluid from the fuel assembly to CPEM is important. Therefore, CPEM features a complicated shape such as having 45 fins, and a flow collector is installed upstream of CPEM to direct the flow from the fuel subassembly outlet to CPEM. In this report, the water experiment was performed on the full-scale model that simulates from the outlets of the fuel assemblies to the SASS flow collector, and flow phenomena around the temperature sensing part was analyzed from the data obtained by PIV measurement.
Ueki, Yoshitaka*; Hashimoto, Shunsaku*; Shibahara, Masahiko*; Aizawa, Kosuke; Ara, Kuniaki
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 5 Pages, 2023/05
Mikami, Nao*; Ueki, Yoshitaka*; Shibahara, Masahiko*; Aizawa, Kosuke; Ara, Kuniaki
International Journal of Multiphase Flow, 159, p.104340_1 - 104340_8, 2023/02
Times Cited Count:5 Percentile:60.05(Mechanics)This study covers the accidental generation of bubble jet flow caused by steam generator (SG) tubes damaging in sodium cooled fast reactors (SFRs). The main objective of this study is to develop a novel state sensing method of bubble jet flow based on acoustic recognition and deep learning. Prior to the application of this method to actual SFRs, we utilize air and water as simulant fluids in order to perform the proof of concept. This study is divided into three phases. The first phase is the acquisition and analysis of pipe flow sound and bubble jet flow sound, each of which simulates the normal and anomaly sound from SG tubes in SFRs. The second phase is the preprocessing of acoustic signals and feature extraction. The third phase is the building of deep learning models and performance evaluation. As a result, every of our proposed models could distinguish between pipe flow sound and bubble jet sound with an accuracy of almost 100.00%, and the best model could classify pipe flow sound and three types of bubble jet flow sound with an accuracy of 99.76%. This result suggests that the acoustic recognition with deep learning has great potential to sense the state of bubble jet flow in actual SFRs.
Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Nagasawa, Kazuyoshi*; Kurihara, Akikazu; Tanaka, Masaaki
JAEA-Research 2022-009, 125 Pages, 2023/01
The design studies of an advanced loop-type sodium-cooled fast reactor (Advanced- SFR) have been carried out by the Japan Atomic Energy Agency (JAEA). At the core outlet, temperature fluctuations occur due to mixing of hot sodium from the fuel assembly with cold sodium from the control rod channels and radial blanket assembly. These temperature fluctuations may cause high cycle thermal fatigue around a bottom of Upper Internal Structure (UIS) located above the core. Therefore, we conducted a water experiment using a 1/3 scale 60 degree sector model that simulated the upper plenum of the advanced loop-type sodium-cooled reactor. And we proposed some countermeasures against large temperature fluctuations that occur at the bottom of the UIS. In this report, we have summarized that the effect of the countermeasure structure to mitigate the temperature fluctuation generated at the bottom of UIS is confirmed, and the Reynolds number dependency of the countermeasure structure and the characteristics of the temperature fluctuation on the control rod surface.
Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 6 Pages, 2022/10
In sodium-cooled fast reactors (SFRs), decay heat removal after a core disruptive accident (CDA) is an important issue for the safety enhancement. Therefore, water experiments using a 1/10 scale experimental apparatus (PHEASANT) that simulates the reactor vessel of an SFR are conducted to investigate the natural circulation phenomena in the reactor vessel. In this study, experiments under the operation of the dipped-type DHX were conducted to investigate the effect of the heat generation ratio between the fuel debris on the core catcher in lower plenum and the reactor core remnant on the natural circulation behavior in the reactor vessel. The temperature distribution and the velocity distribution were measured under two heat generation conditions. Thus, the effect of the heat generation ratio between the fuel debris in the lower plenum and the reactor core remnant on the natural circulation behavior was quantitatively grasped under the dipped-type DHX operating conditions.
Aizawa, Kosuke; Tsuji, Mitsuyo; Kobayashi, Jun; Kurihara, Akikazu
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 7 Pages, 2022/10
In sodium-cooled fast reactors (SFRs), optimizing the design and operate decay heat removal systems (DHRSs) is important for safety enhancement against severe accidents. Thus, it is required to evaluate the cooling capability of DHRSs including the natural circulation behavior inside the reactor vessel during heat-removal phase that the fuel debris relocated in the reactor vessel is cooled by DHRSs. In this study, the experiments which simultaneously operations of the dipped-type DHX and the penetrated-type DHX were conducted to investigate the effect of operating multiple decay heat removal system on the natural circulation behavior in the reactor vessel. After achieving the stable conditions by operating the dipped-type DHX or the penetrated-type DHX, the other DHX was operated and the transient behavior was clarified by the temperature measurements. The clear temperature rise in the reactor vessel was confirmed by operating the penetrated-type DHX as second DHX operation under the condition of the dipped-type DHX operation at the beginning and the high heater power of fuel debris on the core catcher. Therefore, it was confirmed that the inhibition of the cooling for the decay heat occurred by operating multiple DHXs.
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Aizawa, Kosuke; Tsuji, Mitsuyo; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*; Nakane, Shigeru*; Ishida, Katsuji*
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 10 Pages, 2022/04
In sodium-cooled fast reactors (SFRs), optimizing the design and operate decay heat removal systems (DHRSs) is important for safety enhancement against severe accidents that could lead to core melting. The natural circulation phenomena in a reactor vessel during operating a DHRS were clarified by conducting water experiments using a 1:10 scale experimental facility (PHEASANT) simulating the reactor vessel of loop-type SFRs. In this study, we investigated the natural circulation phenomena under conditions of operating the dipped-type DHX and RVACS using the results of temperature and particle image velocimetry (PIV) measurements, respectively. Furthermore, the effects of temperature fluctuation on the PIV measurement were quantitatively evaluated.
Hiyama, Tomoyuki; Aizawa, Kosuke; Nishimura, Masahiro; Kurihara, Akikazu
JAEA-Research 2021-009, 29 Pages, 2021/11
In sodium-cooled fast reactors, high burnup of fuel is required for practical use. It is important to predict and evaluate the flow behavior in a fuel assembly because there is a concern that the heat removal capacity of the fuel assembly with high burnup will be locally reduced due to swirling and thermal deformation of the fuel rods. In this study, flow field measurement tests were conducted using a 3-pin bundle system test specimen for the purpose of elucidating the phenomenon and constructing a verification database for thermal hydraulics analysis code. The viewpoints of the experiment for elucidating the phenomenon are as follows; (1) Overall flow behavior in the subchannel including near the wrapping wire, (2) Relationship between Reynolds number including laminar flow region and flow field, and (3) Evaluation of the effect of the presence or absence of wrapping wire on the flow field. As a result, detailed flow field data in the subchannel was obtained by PIV measurement. It was found that when the wrapping wire crossed the subchannel, the flow occurred toward adjacent subchannel and the flow occurred that follows the winding direction of the wrapping wire. It was confirmed that the tendency of the flow velocity distribution of the Reynolds number in the laminar flow region is significantly different from that of the transition region and the turbulent region under the condition. The test was conducted using a same 3-pin bundle system without the wrapping wire, and it was confirmed that mixing by the wrapping wire occurred even in the laminar flow region.
Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki
Hozengaku, 20(3), p.97 - 101, 2021/10
Focusing on the thermal striping phenomena that occurs at a bottom of the internal structure of an advanced sodium-cooled fast reactor (Advanced-SFR) that has been designed by the Japan Atomic Energy Agency, a water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of Upper Internal Structure (UIS). In the previous paper, we reported the effect of measures to mitigate temperature fluctuations around the control rod channels. In this paper, the same test section was used, and a water experiment was conducted to obtain the characteristics of temperature fluctuations around the radial blanket fuel assembly. And the shape of the Core Instrumentation Support Plate (CIP) was modified, and it was confirmed that it was highly effective in alleviating temperature fluctuations around the radial blanket fuel assembly.
Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki
Hozengaku, 20(3), p.89 - 96, 2021/10
Hot sodium from the fuel assembly can mix with cold sodium from the control rod (CR) channel and the blanket assemblies at the bottom plate of the Upper Internal Structure (UIS) of Advanced-SFR. Temperature fluctuation due to mixing of the fluids at different temperature between the core outlet and cold channel may cause high cycle thermal fatigue on the structure around the bottom of UIS. A water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of UIS. We focused on the temperature fluctuations near the primary and backup control rod channels, and studied the countermeasure structure to mitigate the temperature fluctuation through temperature distribution and flow velocity distribution measurements. As a result, effectiveness of the countermeasure to mitigate the temperature fluctuation intensity was confirmed.
Aizawa, Kosuke; Hiyama, Tomoyuki; Nishimura, Masahiro; Kurihara, Akikazu; Ishida, Katsuji*
Mechanical Engineering Journal (Internet), 8(4), p.20-00547_1 - 20-00547_11, 2021/08
A sodium-cooled fast reactor has been designed to attain a high burn-up core in commercialized fast reactor cycle systems. The sodium-cooled fast reactor adopts a wire spacer between fuel pins. The wire spacer performs functions of securing the coolant channel and the mixing between subchannels. In high burn-up fuel subassemblies, the fuel pin deformation due to swelling and thermal bowing may decrease the local flow velocity in the subassembly and influence the heat removal capability. Therefore, understanding the flow field in a wire-wrapped pin bundle is important. This study performed particle image velocimetry (PIV) measurements using a wire-wrapped three-pin bundle water model to grasp the flow field in the subchannel under conditions, including the laminar to turbulent regions. In the region away from the wrapping wire, the maximum flow velocity was increased by decreasing the Re number. Accordingly, the PIV measurements using the three-pin bundle geometry without the wrapping wire were also conducted to understand the effect of the wrapping wires on the flow field in the subchannel. The results confirmed that the mixing due to the wrapping wire occurred, even in the laminar condition. These experimental results are useful not only for understanding the pin bundle thermal hydraulics, but also for the code validation.
Aizawa, Kosuke; Ara, Kuniaki; Hino, Ryutaro; Hirabayashi, Masaru*
Proceedings of OECD/NEA Specialist Workshop on Advanced Measurement Method and Instrumentation for enhancing Severe Accident Management in an NPP addressing Emergency, Stabilization and Long-term Recovery Phases (SAMMI 2020) (Internet), 4 Pages, 2020/12
Many functions of the instrumentation system did not work in the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant in the severe condition. The function of the hydrogen concentration measurement system was lost due to power supply loss and coolant loss because the system was based on the sampling method. Therefore, the development of an on-site installation type hydrogen monitor which is not based on the sampling method and has environment resistance characteristics is required. Thus, a new type of hydrogen monitor by using acoustic technique has been developed at JAEA. The measurement principle is to detect the changing of sound velocity with the hydrogen concentration in a mixed gas. In this paper, the basic performance and influence of environmental conditions are described.
Okudaira, Takuya; Oku, Takayuki; Ino, Takashi*; Hayashida, Hirotoshi*; Kira, Hiroshi*; Sakai, Kenji; Hiroi, Kosuke; Takahashi, Shingo*; Aizawa, Kazuya; Endo, Hitoshi*; et al.
Nuclear Instruments and Methods in Physics Research A, 977, p.164301_1 - 164301_8, 2020/10
Times Cited Count:11 Percentile:80.72(Instruments & Instrumentation)Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08
The water experiments using a 1/10 scale experimental apparatus simulating the reactor vessel of SFR were conducted to investigate the natural circulation phenomena in a reactor vessel. In this paper, the natural circulation flow field in the reactor vessel was measured by the Particle Image Velocimetry (PIV) method. The PIV measurement was carried out under the operation of the dipped-type direct heat exchanger (DHX) installed in the upper plenum when 20% of the core fuel fell to the lower plenum and accumulated on the core catcher. From the results of PIV measurement, it was quantitatively confirmed that the upward flow occurred at the center region of the lower and upper plenums. In addition, the downward flows were confirmed near the reactor vessel wall in the upper plenum and through outermost layer of the simulated core in the lower plenum. Moreover, the relationship between the temperature field and the velocity field was investigated in order to understand the natural circulation phenomenon in the reactor vessel. From the above results, it was confirmed that the natural circulation cooling path was established under the dipped-type DHX operation.