Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Competition between allowed and first-forbidden $$beta$$ decays of $$^{208}$$At and expansion of the $$^{208}$$Po level scheme

Brunet, M.*; Podoly$'a$k, Zs.*; Berry, T. A.*; Brown, B. A.*; Carroll, R. J.*; Lica, R.*; Sotty, Ch.*; Andreyev, A. N.; Borge, M. J. G.*; Cubiss, J. G.*; et al.

Physical Review C, 103(5), p.054327_1 - 054327_13, 2021/05

 Times Cited Count:4 Percentile:57.13(Physics, Nuclear)

Oral presentation

Time evolution calculation of muon catalyzed fusion by the Runge-Kutta method

Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

A muon ($$mu$$) having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion ($$mu$$CF) between deuteron (d) and triton (t). In this work, we have solved simultaneous reaction rate equations by the 4th-order Runge-Kutta method for the jointed $$mu$$CF cycles in the two layers (H$$_{2}$$/D$$_{2}$$ and D$$_{2}$$/T$$_{2}$$). The T$$_{2}$$ concentration to maximize the intensities of fusion neutrons and muons emitted to the vacuum will be discussed.

Oral presentation

Detection of neutron detection of dd-$$mu$$CF experiment at J-PARC MLF

Natori, Hiroaki*; Doiuchi, Shogo*; Ishida, Katsuhiko*; Kino, Yasushi*; Miyake, Yasuhiro*; Miyashita, Konan*; Nakashima, Ryota*; Nagatani, Yukinori*; Nishimura, Shoichiro*; Oka, Toshitaka; et al.

no journal, , 

A muonic molecule which consists of muon and two hydrogen isotope nuclei (deuteron (d) or tritium (t)) decays immediately via nuclear fusion ($$mu$$CF) and the muon will be released as a recycling muon. We attempted to use these muons to develop the scanning muon microscope. In this work, we will report the detection of neutron which emits during the $$mu$$CF reaction.

Oral presentation

Observation of released muon after intramolecular nuclear reaction, 1; Development of detection method using muonic X-ray

Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

Muon catalized fusion ($$mu$$CF) is expected to be a high-quality muon beam source for undestructive measurement and a monoenergetic neutron source. In this work, we attemped to observe a released muon after intermolecular nuclear reaction using muonic X-ray.

Oral presentation

Observation of released muon using muonic X-ray in dd-$$mu$$CF experiment at J-PARC MLF

Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

Muon catalized fusion ($$mu$$CF) is expected to be a high-quality muon beam source for undestructive measurement and a monoenergetic neutron source. In this work, we discussed how to observe a kinetic energy distribution of a recycling muon emitted after $$mu$$CF reaction.

Oral presentation

Observation of released muon after intermolecular nuclear reaction, 2; Transport simulation of particles

Miyashita, Konan*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

To observe a kinetic energy distribution of a recycling muon emitted after $$mu$$CF reaction, it is necessary to guide the recycling muons to a detector. In this work, we simulated the muon transportation using PHITS code and designed an experimental system.

Oral presentation

Observation of released muon after intramolecular nuclear reaction, 3; Electric field design

Nakashima, Ryota*; Okutsu, Kenichi*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

The recycling muon emitted after the muon catalized fusion ($$mu$$CF) has a kinetic energy between a few keV to 10 keV. To observed the kinetic energy distribution of the recycling muon, we have to guide and inject muons to Ti foil, and measure the muonic X-ray. In this work, we utilized SIMION code to calculate the electric field and the trajectory of muons from deuteron target to Ti foil.

Oral presentation

Numerical simulation and design for momentum distribution measurement of muon released from muon-catalyzed fusion

Miyashita, Konan*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

To measure the kinetic energy of a recycling muon, we discussed how to reduce the background radiation and the trajectory of the transported recycling muons by simulation code.

Oral presentation

Particle transport simulation of kinetic energy selection and detection of muon after muon catalyzed fusion reaction

Nakashima, Ryota*; Okutsu, Kenichi*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

To detect a recycling muon emitted after muon catalyzed fusion reaction, it is necessary to guide the recycling muons from the target to a detector in a low background area. In this work, we simulated the muon transportation using SIMONS and PHITS codes and designed an experimental system.

Oral presentation

Development of muon detecting system for revealing muon catalyzed fusion elementary processes

Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

A muon is one of elementary particles which is known to weight 207 times more than an electron. A nuclear fusion reaction occurs in a muonic molecule which consists of two hydrogen isotope nuclei and a muon because the muon binds more tightly than electron. Since the muon does not directly participate in the fusion reaction, the reaction is called muon catalyzed fusion ($$mu$$CF). The muon released after the reaction is called a "recycling muon", and maintains the molecular orbital information when the muonic molecule formed. Therefore, information of the muon wavefunction can be investigated by observing the energy distribution of the recycling muon. We will report the experimental setup for measuring the energy distribution of the recycling muons after the nuclear reaction.

Oral presentation

Solid hydrogen target for muon catalyzed fusion elementary process measurement

Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

Muon catalyzed fusion ($$mu$$CF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes, such as $$mathrm{dd}mu rightarrow {}^{3}mathrm{He} + mathrm{n} + mu + 3.27~mathrm{MeV}$$ or $$mathrm{t} + mathrm{p} + mu + 4.03~mathrm{MeV}$$. In this work, we have investigated the shape and characteristic of solid hydrogen isotope target.

Oral presentation

Background reduction for detection of regenerated muons after muon-catalyzed fusion; Instrument design by numerical simulation

Miyashita, Konan*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

Muon catalyzed fusion ($$mu$$CF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes. In this work, we have designed the shape of the thermal shield to reduce the background noise.

Oral presentation

The Transport efficiency of charged particles by the electrostatic field created by the core electrodes in the transport tube

Nakashima, Ryota*; Okutsu, Kenichi*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

no journal, , 

We are developing an experimental system to measure the kinetic energy distribution of regenerated muons emitted after muon catalytic nuclear reactions. The trajectory of the regenerated muon emitted from a solid hydrogen target, and the transport efficiency of the regenerated muon and its dependence on the emitted position are calculated/discussed using SIMION code.

13 (Records 1-13 displayed on this page)
  • 1