Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Cai, Y.*; Yoon, S.*; Sheng, Q.*; Zhao, G.*; Seewald, E. F.*; Ghosh, S.*; Ingham, J.*; Pasupathy, A. N.*; Queiroz, R.*; Lei, H.*; et al.
Physical Review B, 111(21), p.214412_1 - 214412_17, 2025/06
Times Cited Count:0Hu, F.-F.*; Qin, T.-Y.*; Ao, N.*; Xu, P. G.; Su, Y. H.; Parker, J. D.*; Shinohara, Takenao; Shobu, Takahisa; Kang, G.-Z.*; Ren, M.-M.; et al.
Journal of Traffic and Transportation Engineering, 25(2), p.75 - 93, 2025/04
Ogawa, Tatsuhiko; Hirata, Yuho; Matsuya, Yusuke; Kai, Takeshi; Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Furuta, Takuya; Abe, Shinichiro; Matsuda, Norihiro; et al.
EPJ Nuclear Sciences & Technologies (Internet), 10, p.13_1 - 13_8, 2024/11
The latest updates on PHITS, a versatile radiation transport code, focusing specifically on track-structure models are presented. Track structure calculations are methods used to simulate the movement of charged particles while explicitly considering each atomic reaction. Initially developed for radiation biology, these calculation methods aimed to analyze the radiation-induced damage to DNA and chromosomes. Several track-structure calculation models, including PHITS-ETS, PHITS-ETS for Si, PHITS-KURBUC, ETSART, and ITSART, have been developed and implemented to PHITS. These models allow users to study the behavior of various particles at the nano-scale across a wide range of materials. Furthermore, potential applications of track-structure calculations have also been proposed so far. This collection of track-structure calculation models, which encompasses diverse conditions, opens up new avenues for research in the field of radiation effects.
Hu, F. F.*; Qin, T. Y.*; Ao, N.*; Su, Y. H.; Zhou, L.*; Xu, P. G.; Parker, J. D.*; Shinohara, Takenao; Chen, J.*; Wu, S. C.*
Engineering Fracture Mechanics, 306, p.110267_1 - 110267_18, 2024/08
Times Cited Count:2 Percentile:55.14(Mechanics)Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Zhang, H.*; Zhou, L.*; Ao, N.*; Su, Y. H.; Shobu, Takahisa; Wu, S. C.*
International Journal of Fatigue, 185, p.108336_1 - 108336_13, 2024/08
Times Cited Count:9 Percentile:93.27(Engineering, Mechanical)Zhou, L.*; Zhang, H.*; Qin, T. Y.*; Hu, F. F.*; Xu, P. G.; Ao, N.*; Su, Y. H.; He, L. H.*; Li, X. H.*; Zhang, J. R.*; et al.
Metallurgical and Materials Transactions A, 55(7), p.2175 - 2185, 2024/07
Times Cited Count:3 Percentile:70.74(Materials Science, Multidisciplinary)Tripathi, V.*; Bhattacharya, S.*; Rubino, E.*; Benetti, C.*; Perello, J. F.*; Tabor, S. L.*; Liddick, S. N.*; Bender, P. C.*; Carpenter, M. P.*; Carroll, J. J.*; et al.
Physical Review C, 109(4), p.044320_1 - 044320_15, 2024/04
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)no abstracts in English
Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuya, Yusuke; Matsuda, Norihiro; Hirata, Yuho; et al.
Journal of Nuclear Science and Technology, 61(1), p.127 - 135, 2024/01
Times Cited Count:144 Percentile:99.97(Nuclear Science & Technology)The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose Monte Carlo radiation transport code that can simulate the behavior of most particle species with energies up to 1 TeV (per nucleon for ions). Its new version, PHITS3.31, was recently developed and released to the public. In the new version, the compatibility with high-energy nuclear data libraries and the algorithm of the track-structure modes have been improved. In this paper, we summarize the upgraded features of PHITS3.31 with respect to the physics models, utility functions, and application software introduced since the release of PHITS3.02 in 2017.
Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.
Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11
Times Cited Count:21 Percentile:94.59(Physics, Multidisciplinary)The cluster structure of the neutron-rich isotope Be has been probed via the (
) reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-R
pke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the
Be ground-state as a rather compact nuclear molecule.
Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Xi, N.*; Gao, Y.-P.*; Ma, Z.*; Wang, W.*; Qi, Z.*; Zhang, S.*; Huang, Z.*; et al.
Nature Physics, 19(12), p.1883 - 1889, 2023/09
Times Cited Count:19 Percentile:93.50(Physics, Multidisciplinary)Pohl, T.*; Sun, Y. L.*; Obertelli, A.*; Lee, J.*; Gmez-Ramos, M.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Cai, B. S.*; Yuan, C. X.*; Brown, B. A.*; et al.
Physical Review Letters, 130(17), p.172501_1 - 172501_8, 2023/04
Times Cited Count:13 Percentile:87.42(Physics, Multidisciplinary)We report on the first proton-induced single proton- and neutron-removal reactions from the neutron deficient O nucleus with large Fermi-surface asymmetry at
100 MeV/nucleon. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively.
Ao, N.*; Zhang, H.*; Xu, H. H.*; Wu, S. C.*; Liu, D.*; Xu, P. G.; Su, Y. H.; Kang, Q. H.*; Kang, G. Z.*
Engineering Fracture Mechanics, 281, p.109166_1 - 109166_14, 2023/03
Times Cited Count:13 Percentile:82.23(Mechanics)Hong, Z.*; Pellegrini, M.*; Erkan, N.*; Liao, H.*; Yang, H.*; Yamano, Hidemasa; Okamoto, Koji*
Annals of Nuclear Energy, 180, p.109462_1 - 109462_9, 2023/01
Times Cited Count:3 Percentile:41.50(Nuclear Science & Technology)A series of experiments were conducted using BC material and SUS304 tubes as a simulant of the real control rods. Reaction rate constant data in the 1450K-1500K range were obtained, and are consistent with the reference values. The reaction layer microstructure observation and the associated chemical composition analysis were also carried onto the experiment samples.
Zhang, H.*; Wu, S. C.*; Ao, N.*; Zhang, J. W.*; Li, H.*; Zhou, L.*; Xu, P. G.; Su, Y. H.
International Journal of Fatigue, 166, p.107296_1 - 107296_11, 2023/01
Times Cited Count:19 Percentile:84.17(Engineering, Mechanical)Orlandi, R.; Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Asai, Masato; Tsukada, Kazuaki; Sato, Tetsuya; Ito, Yuta; Suzaki, Fumi; Nagame, Yuichiro*; et al.
Physical Review C, 106(6), p.064301_1 - 064301_11, 2022/12
Times Cited Count:4 Percentile:52.14(Physics, Nuclear)Tripathi, V.*; Bhattacharya, S.*; Rubino, E.*; Benetti, C.*; Perello, J. F.*; Tabor, S. L.*; Liddick, S. N.*; Bender, P. C.*; Carpenter, M. P.*; Carroll, J. J.*; et al.
Physical Review C, 106(6), p.064314_1 - 064314_14, 2022/12
Times Cited Count:4 Percentile:52.14(Physics, Nuclear)no abstracts in English
Sheng, J.*; Wang, L.*; Candini, A.*; Jiang, W.*; Huang, L.*; Xi, B.*; Zhao, J.*; Ge, H.*; Zhao, N.*; Fu, Y.*; et al.
Proceedings of the National Academy of Sciences of the United States of America, 119(51), p.e2211193119_1 - e2211193119_9, 2022/12
Times Cited Count:34 Percentile:93.63(Multidisciplinary Sciences)Iwamoto, Yosuke; elik, Y.*; Cerutti, F.*; Froeschl, R.*; Lorenzon, T.*; Mokhov, N.*; Pujol, F. S.*; Vlachoudis, V.*; Yao, L.
Proceedings of 15th Workshop on Shielding aspects of Accelerators, Targets, and Irradiation Facilities (SATIF-15) (Internet), p.25 - 34, 2022/09
Secondary particles produced by irradiating a target with a proton beam from a proton accelerator are widely used in the fields of physics research. In the design of proton accelerator facilities, it is necessary to calculate DPA, energy deposition, particle fluence, etc., related to the radiation damage dose to the target using Monte Carlo (MC) particle transport codes such as FLUKA, MARS, MCNP, and PHITS. Therefore, it is important to intercompare and verify the results of damage calculations using these MC codes. In this study, using these MC codes, we calculate damage dose with four sources: (1) a neutron source that irradiates a beryllium target with 30 MeV protons, (2) a spallation neutron source at LANL that injects 800 MeV protons into a tungsten target, (3) a neutrino source at J-PARC that injects 30 GeV protons into a graphite target, (4) an antiproton source at FNAL, which injects 120 GeV protons into a copper target, and compare the calculation results with each MC code.
Brunet, M.*; Podolyk, Zs.*; Berry, T. A.*; Brown, B. A.*; Carroll, R. J.*; Lica, R.*; Sotty, Ch.*; Andreyev, A. N.; Borge, M. J. G.*; Cubiss, J. G.*; et al.
Physical Review C, 103(5), p.054327_1 - 054327_13, 2021/05
Times Cited Count:7 Percentile:63.10(Physics, Nuclear)Kong, L.*; Gong, J.*; Hu, Q.*; Capitani, F.*; Celeste, A.*; Hattori, Takanori; Sano, Asami; Li, N.*; Yang, W.*; Liu, G.*; et al.
Advanced Functional Materials, 31(9), p.2009131_1 - 2009131_12, 2021/02
Times Cited Count:33 Percentile:82.86(Chemistry, Multidisciplinary)The soft nature of organic-inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. However, these soft materials meanwhile feature a general characteristic that even a very mild pressure will lead to detrimental lattice distortion and weaken the critical light-matter interaction, thereby triggering the performance degradation. Here, using the methylammonium lead iodide as a representative exploratory platform, we observed the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable.