Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Aoki, Takeshi; Shimizu, Atsushi; Ishii, Katsunori; Morita, Keisuke; Mizuta, Naoki; Kurahayashi, Kaoru; Yasuda, Takanori; Noguchi, Hiroki; Nomoto, Yasunobu; Iigaki, Kazuhiko; et al.
Annals of Nuclear Energy, 220, p.111503_1 - 111503_7, 2025/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Aiming to establish coupling technologies between a high temperature gas cooled reactor and a hydrogen production plant, JAEA has initiated the HTTR Heat Application Test Project and is conducting the safety design and the safety analysis for the licensing of the HTTR Heat Application Test Facility. The present study proposed a relative evaluation methodology for the demarcation of applicable laws and design standards for the nuclear hydrogen production system and applied it to the HTTR Heat Application Test Facility. The evaluation results showed that a candidate applying the High Pressure Gas Safety Act to the Heat Application Test Facility (hydrogen production plant) and design standards established under the High Pressure Gas Safety Act to the steam reformer did not show the lowest category in any of the metrics, and was proposed as the most superior demarcation option for the HTTR Heat Application Test Facility.
Tamura, Yukiko*; Arakawa, Masato*; Takenaka, Mikihito*; Nakanishi, Yohei*; Fujinami, So*; Shibata, Motoki*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Yamada, Masako*; Seto, Hideki*; et al.
Polymer, 333, p.128662_1 - 128662_8, 2025/08
Times Cited Count:0Machida, Akihiko*; Saito, Hiroyuki*; Aoki, Katsutoshi*; Komatsu, Kazuki*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Machida, Shinichi*; Sato, Toyoto*; Orimo, Shinichi*
Physical Review B, 111(22), p.224413_1 - 224413_6, 2025/06
Times Cited Count:1The crystal and magnetic structures of antiferromagnetic Mn deuterides formed by hydrogenating Mn metal at high temperature and high pressure, fcc -MnDx and hcp
-MnDx, were investigated by in-situ neutron powder diffraction. Deuterium atoms partially occupied the octahedral interstitial positions of the fcc and hcp metal lattices. The site occupancies increased rapidly with decreasing temperature from
700 to
450 K and remained down to 300 K. N
el temperature of 543(10) K was determined for
-MnD
. For
-MnD
, saturation magnetic moment and N
el temperature were determined to be 0.82(1)
and 347(3) K, respectively. The N
el temperatures determined for
-MnD
and
-MnD
are consistent with those predicted by the respective Slater-Pauling curves proposed in previous studies. The updated N
el temperatures provide insights into the development of more accurate Slater-Pauling curves based on electronic band structure calculations.
Tanizaki, Shiho*; Kubo, Tomohiro*; Bito, Yosuke*; Mori, Shigeki*; Aoki, Hiroyuki; Sato, Kotaro*
RSC Sustainability (Internet), 3(4), p.1714 - 1720, 2025/04
Aoki, Katsutoshi*; Machida, Akihiko*; Saito, Hiroyuki*; Hattori, Takanori
Koatsuryoku No Kagaku To Gijutsu, 35(1), p.4 - 11, 2025/03
Iron reacts with hydrogen to form solid solutions with body-centered cubic, face-centered cubic, hexagonal close packed, and double hexagonal close packed structures at high temperatures and high pressures. Neutron diffraction is the most powerful tool for determining the occupation sites and occupancies of hydrogen atoms dissolved in a metal lattice. Structural parameters, including hydrogen occupation sites and occupancies, are refined via Rietveld analysis for neutron diffraction data. We present our expertise in Rietveld refinement of iron hydrides accumulated over 10 years.
Taguchi, Miki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Ozawa, Satoru*; Hasegawa, Ryuichi*; Morimitsu, Yuma*; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Polymer Journal, 7 Pages, 2025/03
Times Cited Count:0 Percentile:0.00(Polymer Science)Horiike, Yuki*; Aoki, Hiroyuki; Ouchi, Makoto*; Terashima, Takaya*
Journal of the American Chemical Society, 147(8), p.6727 - 6738, 2025/02
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Shundo, Atsuomi*; Kawaguchi, Daisuke*; Tanaka, Keiji*; Aoki, Hiroyuki
ACS Applied Materials & Interfaces, 8 Pages, 2025/00
Yamamoto, Katsuhiro*; Imai, Tatsuya*; Kawai, Atsuki*; Ito, Eri*; Miyazaki, Tsukasa*; Miyata, Noboru*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki
ACS Applied Materials & Interfaces, 16(48), p.66782 - 66791, 2024/11
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Miyazaki, Tsukasa*; Miyata, Noboru*; Arima-Osonoi, Hiroshi*; Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Takenaka, Mikihito*; Nakanishi, Yohei*; Shibata, Motoki*; Aoki, Hiroyuki; Yamada, Norifumi*; et al.
Colloids and Surfaces A; Physicochemical and Engineering Aspects, 701, p.134928_1 - 134928_8, 2024/11
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Park, I. W.*; Sako, Hiroyuki; Aoki, Kazuya*; Gubler, P.; Lee, S. H.*
Journal of Subatomic Particles and Cosmology (Internet), 1-2, p.100014_1 - 100014_11, 2024/11
Morita, Keisuke; Aoki, Takeshi; Shimizu, Atsushi; Sato, Hiroyuki
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 6 Pages, 2024/11
Machida, Akihiko*; Saito, Hiroyuki*; Sugimoto, Hidehiko*; Hattori, Takanori; Sano, Asami; Endo, Naruki*; Katayama, Yoshinori*; Iizuka, Riko*; Sato, Toyoto*; Matsuo, Motoaki*; et al.
Nature Communications (Internet), 15, p.8861_1 - 8861_2, 2024/10
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)In our previous article (Nature Commun. 5, 5063 (2014)), the site occupancies of D atoms dissolved in an fcc Fe metal lattice were investigated via Rietveld refinement of neutron powder diffraction patterns collected at 988 K and 6.3 GPa. The fcc metal lattice has two interstitial sites available for accommodating D atoms: octahedral and tetrahedral sites. The Rietveld refinement revealed that D atoms occupied mainly the octahedral sites with occupancy of 0.532 and slightly the tetrahedral sites with occupancy of 0.056. Subsequent density-functional-theory (DFT) calculations by Antonov (Phys. Rev. Mater. 2019)) showed that the occupation energy on the tetrahedral site was significantly higher than that on the octahedral site; the tetrahedral site occupation was unlikely to occur even at temperatures as high as 988 K. We reexamined the site occupancies of D-atom by Rietveld refinement including extinction correction. As a result, the octahedral occupancy was increased to 0.60 and the tetrahedral occupancy was reduced to zero. The occupation of only the octahedral site for D atom is consistent with the DFT calculation, although in contrast to the previous results.
Aoki, Takeshi; Hasegawa, Takeshi; Kurahayashi, Kaoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Sakaba, Nariaki
Proceedings of 11th International Topical Meeting on High Temperature Reactor Technology (HTR 2024), 6 Pages, 2024/10
Japan Atomic Energy Agency (JAEA) is planning to perform a test named HTTR heat application test coupling HTTR (High temperature engineering test reactor) and a hydrogen production plant. The present study reports results of the safety design and safety analysis for HTTR heat application test facility. As a safety design, safety classification of structures, systems, and components was defined in the test facility based on their safety functions. As a preliminary safety analysis, a thermal-hydraulic analysis was performed with RELAP5 code. The safety analysis revealed that newly identified events for HTTR heat application test facility except for the rupture of heat transfer tube of steam generator was enveloped by the licensing basis events in conventional HTTR. The preliminary analysis proved that the safety criteria is satisfied in the candidate of licensing basis event.
Uchida, Kazuto*; Masuda, Tsukuru*; Hara, Shintaro*; Matsuo, Yoichi*; Liu, Y.*; Aoki, Hiroyuki; Asano, Yoshihiko*; Miyata, Kazuki*; Fukuma, Takeshi*; Ono, Toshiya*; et al.
ACS Applied Materials & Interfaces, 16(30), p.39104 - 39116, 2024/07
Times Cited Count:1 Percentile:30.18(Nanoscience & Nanotechnology)Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Shibata, Motoki*; Nakanishi, Yohei*; Arakawa, Masato*; Takenaka, Mikihito*; Kida, Takumitsu*; Tokumitsu, Katsuhisa*; Tanaka, Ryo*; et al.
Langmuir, 40(30), p.15758 - 15766, 2024/07
Times Cited Count:1 Percentile:0.00(Chemistry, Multidisciplinary)Kawano, Masayuki*; Morimitsu, Yuma*; Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Macromolecules, 57(14), p.6625 - 6633, 2024/07
Times Cited Count:0 Percentile:0.00(Polymer Science)Sujita, Ryota*; Aoki, Hiroyuki; Takenaka, Mikihito*; Ouchi, Makoto*; Terashima, Takaya*
ACS Macro Letters (Internet), 13(6), p.747 - 753, 2024/06
Times Cited Count:2 Percentile:28.80(Polymer Science)Park, I. W.*; Sako, Hiroyuki; Aoki, Kazuya*; Gubler, P.; Lee, S. H.*
Physical Review D, 109(11), p.114042_1 - 114042_10, 2024/06
Times Cited Count:0 Percentile:0.00(Astronomy & Astrophysics)Yamazaki, Dai; Maruyama, Ryuji; Aoki, Hiroyuki; Hanashima, Takayasu*; Akutsu-Suyama, Kazuhiro*; Miyata, Noboru*; Soyama, Kazuhiko
Quantum Beam Science (Internet), 9(2), p.20_1 - 20_12, 2024/06