Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

MIRS: an imaging spectrometer for the MMX mission

Barucci, M. A.*; Reess, J.-M.*; Bernardi, P.*; Doressoundiram, A.*; Fornasier, S.*; Le Du, M.*; Iwata, Takahiro*; Nakagawa, Hiromu*; Nakamura, Tomoki*; Andr$'e$, Y.*; et al.

Earth, Planets and Space (Internet), 73(1), p.211_1 - 211_28, 2021/12

 Times Cited Count:13 Percentile:80.63(Geosciences, Multidisciplinary)

The MMX InfraRed Spectrometer (MIRS) is an imaging spectrometer on board of MMX JAXA mission. MIRS is built at LESIA-Paris Observatory in collaboration with four other French laboratories, collaboration and financial support of CNES and close collaboration with JAXA and MELCO. The instrument is designed to fully accomplish MMX's scientific and measurement objectives. MIRS will remotely provide near-infrared spectral maps of Phobos and Deimos containing compositional diagnostic spectral features that will be used to analyze the surface composition and to support the sampling site selection. MIRS will also study Mars atmosphere, in particular to spatial and temporal changes such as clouds, dust and water vapor.

Journal Articles

Decommissioning plutonium fuel fabrication facility

Iemura, Keisuke; Nakai, Koji; Watahiki, Masatoshi; Kitamura, Akihiro; Suzuki, Kazunori; Aoki, Yoshikazu

Dekomisshoningu Giho, (43), p.2 - 9, 2011/03

Plutonium fuel fabrication facility is constructed in 1972 and it is almost 40 years of age and equipment and components comprises the facility start degrading. Therefore we need to start dismantling gloveboxes from old ones first and at the same time to maintain the facility components and structures and gloveboxes as necessary. Also, since waste storage space is limited in the site, we effectively use open spaces generated after removing gloveboxes and equipment as temporal waste storage space. After shipping these wastes from the facility, final characterization of the facility will be conducted and demolition of the facility will be take place.

JAEA Reports

Study on investigation of microbial effects for geological disposal, 2 (Joint research)

Tochigi, Yoshikatsu; Yoshikawa, Hideki; Aoki, Kazuhiro; Yui, Mikazu; Asano, Takahiro*; Honjo, Hideko*; Haginuma, Masashi*; Kawakami, Yasushi*; Suzuki, Kazunori*

JAEA-Research 2008-025, 55 Pages, 2008/03

JAEA-Research-2008-025.pdf:8.55MB

Results of joint research on fiscal year 2006 between Japan Atomic Energy Agency (JAEA) and Institute of Research and Innovative (IRI) titled as "Study on investigation of microbial effects for geological disposal" are described in this report. The objective of this study is to develop a method for estimating microbial effects for barrier performance of geological disposal site. The modeling was performed to examine the effect on the change in groundwater chemistry (mainly by electron acceptors) by microbial metabolism as well as microbial activities. In order to use the data (chemical composition, biomass, etc.) in the MINT code, groundwater was collected from the drilled well prepared for chemical and microbial analyses of groundwater. The well was prepared in observation field near Horonobe Underground Research Center of JAEA in fiscal year 2006. Then, numerical modeling using collected data of groundwater with numerical modeling program code "MINT" considering microbial effects was carried out. The modeling was carried out to evaluate the microbial effect for stability of chemical and microbial composition of groundwater. As the result of the modeling, relatively low microbial effect for groundwater composition was observed in particular for the concentration of dissolved methane, methanogen, sulfur reducing bacteria (SRB) and sulfur ion. The result shows that low redox potential is stable in the well in spite of shallow depth.

JAEA Reports

Study on investigation of microbial effects for geological disposal, 1 (Joint research)

Tochigi, Yoshikatsu; Yoshikawa, Hideki; Aoki, Kazuhiro; Yui, Mikazu; Honjo, Hideko*; Haginuma, Masashi*; Kawakami, Yasushi*; Suzuki, Kazunori*

JAEA-Research 2007-010, 51 Pages, 2007/03

JAEA-Research-2007-010.pdf:4.82MB

Results of joint research on Fiscal 2005 between Japan Atomic Energy Agency (JAEA) and Institute of Research and Innovative (IRI) titled as "Study for investigation of microbial effects on geological disposal" are described in this report. The objective of this study is constructing advanced method for examining microbial effect for barrier performance of geological disposal site. In fiscal 2005, groundwater and rock core sample have been collected from drilled well on observation field near Horonobe Underground Research Center of JAEA and chemical analysis for collected ground water have been carried out and sensitivity analysis for existing observed data of groundwater with numerical analysis program code "MINT" considering microbial effect have been carried out.

JAEA Reports

Experimental Fast Reactor "JOYO" MK-3 Function Test; Interlock test of the primary and secondary cooling system and function test of the remote automatic fuel handling control system

Michino, Masanobu; Suzuki, Toshiaki; Aita, Tsuyoshi; Suto, Masayoshi; Saito, Takakazu; Kawahara, Hirotaka; Isozaki, Kazunori; Ito, Hideaki; Inoue, Setsunari; Aoki, Hiroshi; et al.

JNC TN9430 2004-001, 103 Pages, 2004/03

JNC-TN9430-2004-001.pdf:4.06MB

This report describes the results of the primary and secondary cooling system interlock test and the fuel handling system function test, which were done as a part of JOYO MK-3 function test. The items of the test are: (1) Primary and secondary cooling system interlock test (SKS-106,210) (2) Loss of electric power supply test (SKS-116) (3) In-vessel and ex-vessel automatic fuel transportation test (SKS-501,502) As the interlock of the primary and secondary cooling system was changed, the interlock test by the reactor scram and the loss of electric power supply was carried out. The function of the remote automatic fuel handling system was confirmed before the handling of the fuel for MK-3 core configuration. The results of the test satisfied the required performance, and it was confirmed that operation of the primary and secondary cooling system interlock and operation of the fuel handling system in JOYO MK-3 were normal.

JAEA Reports

An Investigation of fuel and fission product behavior in start-up test of HTTR, 1; Result up to 15MW operation

Sawa, Kazuhiro; Tobita, Tsutomu*; Ueta, Shohei; Suzuki, Shuichi*; Sumita, Junya; Sekita, Kenji; Aoki, Kazunori*; Ouchi, Hiroshi

JAERI-Research 2001-002, 33 Pages, 2001/02

JAERI-Research-2001-002.pdf:1.42MB

no abstracts in English

JAEA Reports

Evaluation of thermal striping for the plugging system in the secondary auxiliary cooling system in JOYO

Isozaki, Kazunori; Ogawa, Toru; Kubo, Atsuhiko; Sugaya, Kazushi*; Aoki, Hiroshi; Ozawa, Kenji

PNC TN9410 98-055, 92 Pages, 1998/05

PNC-TN9410-98-055.pdf:6.0MB

Scrutiny based on the convenient evaluation to verify whether we have the place where thermal striping in the pipe confluence part was thought to be a primary factor for the heavy accident or not has been done in JOYO. As the result, the big temperature difference ($$Delta$$Tin) of the simple inner pipe confluence part existed at the inner pipe confluence part of the plugging system in the secondary main and auxiliary cooling system. Therefore, detailed evaluation of thermal striping was needed. With the thermocouples of high response installed, the temperature fluctuation in outer surface of the pipe was measured on the secondary auxiliary plugging system for the reason why the temperature difference ($$Delta$$Tin) was the biggest. And, the temperature fluctuation in inner surface of the pipe and stress occurring in the pipe plate thickness direction was evaluated by means of the temperature fluctuation measurement result and non-linear structure analysis system "FINAS". The above-mentioned evaluation results were as follows. (1)The maximum temperature fluctuation occurring in the pipe was always located from the center of inner pipe confluence to 10mm position of the down-stream side. (2)The maximum temperature fluctuation range was about 33$$^{circ}$$C in outer surface of the pipe. And, controlling frequency of the temperature fluctuation was 0.04Hz and 0.09Hz. (3)Time delay was almost never contained in the temperature fluctuation elements between inner and outer surface of the pipe by dint of analysis results of the heat conduction by "FINAS". And, the big temperature distribution did not occur in the pipe plate thickness direction was confirmed that the big temperature distribution did not occur in the pipe plate thickness direction. (4)The temperature fluctuation in the pipe inner surface and the stress occurring in the pipe plate thickness direction was evaluated by use of result of the temperature fluctuation measurement and the heat conduction ...

7 (Records 1-7 displayed on this page)
  • 1