Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study of the axial $$U(1)$$ anomaly at high temperature with lattice chiral fermions

Aoki, Sinya*; Aoki, Yasumichi*; Cossu, G.*; Fukaya, Hidenori*; Hashimoto, Shoji*; Kaneko, Takashi*; Rohrhofer, C.*; Suzuki, Kei

Physical Review D, 103(7), p.074506_1 - 074506_18, 2021/04

 Times Cited Count:2 Percentile:82.86(Astronomy & Astrophysics)

We investigate the axial $$U(1)$$ anomaly of two-flavor QCD at temperatures 190-330 MeV. In order to preserve precise chiral symmetry on the lattice, we employ the M$"o$bius domain-wall fermion action as well as overlap fermion action implemented with a stochastic reweighting technique. Compared to our previous studies, we reduce the lattice spacing to 0.07 fm, simulate larger multiple volumes to estimate finite size effect, and take more than four quark mass points, including one below physical point to investigate the chiral limit. We measure the topological susceptibility, axial $$U(1)$$ susceptibility, and examine the degeneracy of $$U(1)$$ partners in meson/baryon correlators. All the data above the critical temperature indicate that the axial $$U(1)$$ violation is consistent with zero within statistical errors. The quark mass dependence suggests disappearance of the $$U(1)$$ anomaly at a rate comparable to that of the $$SU(2)_L times SU(2)_R$$ symmetry breaking.

Journal Articles

Axial U(1) symmetry and mesonic correlators at high temperature in $$N_f=2$$ lattice QCD

Suzuki, Kei; Aoki, Sinya*; Aoki, Yasumichi*; Cossu, G.*; Fukaya, Hidenori*; Hashimoto, Shoji*; Rohrhofer, C.*

Proceedings of Science (Internet), 363, 7 Pages, 2020/08

We investigate the high-temperature phase of QCD using lattice QCD simulations with $$N_f=2$$ dynamical M$"o$bius domain-wall fermions. On generated configurations, we study the axial $$U(1)$$ symmetry, overlap-Dirac spectra, screening masses from mesonic correlators, and topological susceptibility. We find that some of the observables are quite sensitive to lattice artifacts due to a small violation of the chiral symmetry. For those observables, we reweight the M$"o$bius domain-wall fermion determinant by that of the overlap fermion. We also check the volume dependence of observables. Our data near the chiral limit indicates a strong suppression of the axial $$U(1)$$ anomaly at temperatures $$geq$$ 220 MeV.

Journal Articles

Symmetries of the light hadron spectrum in high temperature QCD

Rohrhofer, C.*; Aoki, Yasumichi*; Cossu, G.*; Fukaya, Hidenori*; Gattringer, C.*; Glozman, L. Ya.*; Hashimoto, Shoji*; Lang, C. B.*; Suzuki, Kei

Proceedings of Science (Internet), 363, 7 Pages, 2020/08

Properties of QCD matter change significantly around the chiral crossover temperature, and the effects on $$U(1)_A$$ and topological susceptibilities, as well as the meson spectrum have been studied with much care. Baryons and the effect of parity doubling in this temperature range have been analyzed previously by various other groups employing different setups. Here we construct suitable operators to investigate chiral and axial $$U(1)_A$$ symmetries in the baryon spectrum. Measurements for different volumes and quark-masses are done with two flavors of chirally symmetric domain-wall fermions at temperatures above the critical one. The possibility of emergent $$SU(4)$$ and $$SU(2)_{CS}$$ symmetries is discussed.

Oral presentation

Axial U(1) symmetry at high temperatures in $$N_f=2+1$$ lattice QCD with chiral fermions

Aoki, Sinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Kanamori, Issaku*; Kaneko, Takashi*; Nakamura, Yoshifumi*; Rohrhofer, C.*; Suzuki, Kei

no journal, , 

The axial U(1) anomaly in high-temperature QCD plays an important role to understand the phase diagram of QCD. The previous works by JLQCD Collaboration studied high-temperature QCD using 2-flavor dynamical chiral fermions such as the domain-wall fermion and reweighted overlap fermion. We extend our simulations to QCD with 2+1-flavor dynamical quarks, where the masses of the up, down, and strange quarks are near the physical point, and the temperatures are close to or higher than the pseudocritical temperature. In this talk, we will present the results for the Dirac spectrum, topological susceptibility, axial U(1) susceptibility, and hadronic collelators.

4 (Records 1-4 displayed on this page)
  • 1