Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 606

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

$$^{149}$$Sm synchrotron-radiation-based M$"{o}$ssbauer spectroscopy of Sm-based heavy fermion compounds

Tsutsui, Satoshi; Higashinaka, Ryuji*; Mizumaki, Masaichiro*; Kobayashi, Yoshio*; Nakamura, Jin*; Ito, Takashi; Yoda, Yoshitaka*; Matsuda, Tatsuma*; Aoki, Yuji*; Sato, Hideyuki*

Interactions (Internet), 245(1), p.9_1 - 9_10, 2024/12

Journal Articles

Project plan of HTTR heat application test facility; Safety design and Safety analysis

Aoki, Takeshi; Hasegawa, Takeshi; Kurahayashi, Kaoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Sakaba, Nariaki

Proceedings of 11th International Topical Meeting on High Temperature Reactor Technology (HTR 2024), 6 Pages, 2024/10

Japan Atomic Energy Agency (JAEA) is planning to perform a test named HTTR heat application test coupling HTTR (High temperature engineering test reactor) and a hydrogen production plant. The present study reports results of the safety design and safety analysis for HTTR heat application test facility. As a safety design, safety classification of structures, systems, and components was defined in the test facility based on their safety functions. As a preliminary safety analysis, a thermal-hydraulic analysis was performed with RELAP5 code. The safety analysis revealed that newly identified events for HTTR heat application test facility except for the rupture of heat transfer tube of steam generator was enveloped by the licensing basis events in conventional HTTR. The preliminary analysis proved that the safety criteria is satisfied in the candidate of licensing basis event.

Journal Articles

Introduction to dismantling and decommissioning chemistry

Sato, Nobuaki*; Kameo, Yutaka; Sato, Soichi; Kumagai, Yuta; Sato, Tomonori; Yamamoto, Masahiro*; Watanabe, Yutaka*; Nagai, Takayuki; Niibori, Yuichi*; Watanabe, Masayuki; et al.

Introduction to Dismantling and Decommissioning Chemistry, 251 Pages, 2024/09

This book focuses on the dismantling and decommissioning of nuclear facilities and reactors that have suffered severe accidents. In Part 1, we introduce basic aspects ranging from fuel chemistry, analytical chemistry, radiation chemistry, corrosion, and decontamination chemistry to waste treatment and disposal. Then, Part 2 covers the chemistry involved in the decommissioning of various nuclear facilities, and discusses what chemical approaches are necessary and possible for the decommissioning of TEPCO's Fukushima Dai-ichi Nuclear Power Plants, how decommissioning should be carried out, and what kind of research and development and also human resource development are required for this.

Journal Articles

R&D status of digital technology on inverse estimation of radioactive source distributions and related source countermeasures; Fast Digital Twin Tech. in Decommissioning Field: 3D-ADRES-Indoor FrontEnd

Machida, Masahiko; Yamada, Susumu; Kim, M.; Tanaka, Satoshi*; Tobita, Yasuhiro*; Iwata, Ayako*; Aoki, Yuto; Aoki, Kazuhisa; Yanagisawa, Kenichi*; Yamaguchi, Takashi; et al.

RIST News, (70), p.3 - 22, 2024/09

Inside the Fukushima Daiichi Nuclear Power Plant (1F), there are many locations with high radiation levels due to contamination by radioactive materials that leaked from the reactor. These pose a significant obstacle to the smooth progress of decommissioning work. To help solve this issue, the Japan Atomic Energy Agency (JAEA), under a subsidy from the Ministry of Economy, Trade, and Industry's decommissioning and contaminated water management project, is conducting research and development on digital technologies to improve the radiation environment inside the decommissioning site. This project, titled "Development of Technology to Improve the Environment Inside Reactor Buildings (Enhancing Digital Technology for Environment and Source Distribution to Reduce Radiation Exposure)," began in April of FY 2023. In this project, the aim is to develop three interconnected systems: FrontEnd, Pro, and BackEnd. The FrontEnd system, based on the previously developed 3D-ADRES-Indoor (prototype) from FY 2021-2022, will be upgraded to a high-speed digital twin technology usable on-site. The Pro system will carry out detailed analysis in rooms such as the new office building at 1F, while the BackEnd system will serve as a database to centrally manage the collected and analyzed data. This report focuses on the FrontEnd system, which will be used on-site. After point cloud measurement, the system will quickly create a 3D mesh model, estimate the radiation source from dose rate measurements, and refine the position and intensity of the estimated source using recalculation techniques (re-observation instructions and re-estimation). The results of verification tests conducted on Unit 5 are also presented. Furthermore, the report briefly discusses the future research and development plans for this project.

Journal Articles

Methodology development for explosion hazard evaluation in hydrogen production system using high temperature gas-cooled reactor

Morita, Keisuke; Aoki, Takeshi; Shimizu, Atsushi; Sato, Hiroyuki

Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 6 Pages, 2024/08

Journal Articles

Universal access to water-compatible and nanostructured materials via the self-assembly of cationic alternating copolymers

Sujita, Ryota*; Aoki, Hiroyuki; Takenaka, Mikihito*; Ouchi, Makoto*; Terashima, Takaya*

ACS Macro Letters (Internet), 13(6), p.747 - 753, 2024/06

 Times Cited Count:0 Percentile:0.00(Polymer Science)

Journal Articles

Hydrogenation of silicon-bearing hexagonal close-packed iron and its implications for density deficits in the inner core

Mori, Yuichiro*; Kagi, Hiroyuki*; Aoki, Katsutoshi*; Takano, Masahiro*; Kakizawa, Sho*; Sano, Asami; Funakoshi, Kenichi*

Earth and Planetary Science Letters, 634, p.118673_1 - 118673_8, 2024/05

 Times Cited Count:1 Percentile:73.79(Geochemistry & Geophysics)

To investigate silicon effects on the hydrogen-induced volume expansion of iron, neutron diffraction and X-ray diffraction experiments were conducted to examine hcp-Fe$$_{0.95}$$Si$$_{0.05}$$ under high pressures and high temperatures. Neutron diffraction experiments were performed on the deuterated hcp-Fe$$_{0.95}$$Si$$_{0.05}$$ at 13.5 GPa and 900 K, and at 12.1 GPa and 300 K. By combining the P-V-T equation of state of hcp-Fe$$_{0.95}$$Si$$_{0.05}$$, present results indicate that the hydrogen-induced volume expansion of hcp-Fe$$_{0.95}$$Si$$_{0.05}$$ is 10% greater than that of pure hcp iron. Using the obtained values, we estimated the hydrogen content that would reproduce the density deficit in the inner core, which was 50% less than that without the effect of silicon. Possible hydrogen content, $$x$$, in the inner core and the outer core was calculated to be 0.07 and 0.12-0.15, respectively, when reproducing the density deficit of the inner core with hcp-Fe$$_{0.95}$$Si$$_{0.05}$$Hx.

Journal Articles

Lamellar microphase separation and phase transition of hydrogen-bonding/crystalline statistical copolymers; Amide functionalization at the interface

Ikami, Takaya*; Aoki, Hiroyuki; Terashima, Takaya*

ACS Macro Letters (Internet), 13(4), p.446 - 452, 2024/04

 Times Cited Count:0 Percentile:0.00(Polymer Science)

Journal Articles

Field-induced insulator-metal transition in EuTe$$_2$$

Takeuchi, Tetsuya*; Honda, Fuminori*; Aoki, Dai*; Haga, Yoshinori; Kida, Takanori*; Narumi, Yasuo*; Hagiwara, Masayuki*; Kindo, Koichi*; Karube, Kosuke*; Harima, Hisatomo*; et al.

Journal of the Physical Society of Japan, 93(4), p.044708_1 - 044708_10, 2024/04

 Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)

Journal Articles

Synthesis of heat-resistant living polymer particles by one-step reversible addition-fragmentation chain transfer precipitation polymerization of styrene and $$N$$-phenylmaleimide

Yamazaki, Shun*; Kaneko, Naoya*; Kato, Atsuya*; Watanabe, Kohei*; Aoki, Daisuke*; Taniguchi, Tatsuo*; Karatsu, Takashi*; Ueda, Yuki; Motokawa, Ryuhei; Okura, Koki*; et al.

Polymer, 298, p.126846_1 - 126846_11, 2024/04

 Times Cited Count:0 Percentile:0.00(Polymer Science)

Journal Articles

Development of a hybrid evaluation method for long-term structural soundness of nuclear reactor buildings using monitoring and damage imaging technologies; Nuclear energy science & technology and human resource development project

Maeda, Masaki*; Tanabe, Tadao*; Nishiwaki, Tomoya*; Aoki, Takayuki*; Dozaki, Koji*; Nishimura, Koshiro*; Fujii, Sho*; Ueno, Fumiyoshi; Tanaka, Akio*; Suzuki, Yusuke*; et al.

Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 10 Pages, 2024/03

Journal Articles

Development of a D$$_2$$O/H$$_2$$O vapor generator for contrast-variation neutron scattering

Arima-Osonoi, Hiroshi*; Takata, Shinichi; Kasai, Satoshi*; Ouchi, Keiichi*; Morikawa, Toshiaki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Iwase, Hiroki*; Hiroi, Kosuke; et al.

Journal of Applied Crystallography, 56(6), p.1802 - 1812, 2023/12

 Times Cited Count:2 Percentile:60.51(Chemistry, Multidisciplinary)

Journal Articles

Microphase separation of cationic homopolymers bearing alkyl ammonium salts into sub-4 nm lamellar materials with water intercalation channels

Sujita, Ryota*; Imai, Sahori*; Ouchi, Makoto*; Aoki, Hiroyuki; Terashima, Takaya*

Macromolecules, 56(23), p.9738 - 9749, 2023/12

 Times Cited Count:2 Percentile:35.88(Polymer Science)

Journal Articles

Impact of the Ce$$4f$$ states in the electronic structure of the intermediate-valence superconductor CeIr$$_3$$

Fujimori, Shinichi; Kawasaki, Ikuto; Takeda, Yukiharu; Yamagami, Hiroshi; Sasabe, Norimasa*; Sato, Yoshiki*; Shimizu, Yusei*; Nakamura, Ai*; Maruya, A.*; Homma, Yoshiya*; et al.

Electronic Structure (Internet), 5(4), p.045009_1 - 045009_7, 2023/11

Journal Articles

Adhesion interface studied by neutron reflectometry

Aoki, Hiroyuki

Hamon, 33(4), p.142 - 145, 2023/11

Journal Articles

Strain-induced crystallization and phase separation used for fabricating a tough and stiff slide-ring solid polymer electrolyte

Hashimoto, Kei*; Shiwaku, Toru*; Aoki, Hiroyuki; Yokoyama, Hideaki*; Mayumi, Koichi*; Ito, Kozo*

Science Advances (Internet), 9(47), p.eadi8505_1 - eadi8505_8, 2023/11

 Times Cited Count:25 Percentile:96.12(Multidisciplinary Sciences)

Journal Articles

Development of coupling technology for high temperature gas-cooled reactors and hydrogen production facility; HTTR heat application test project plan

Ishii, Katsunori; Morita, Keisuke; Noguchi, Hiroki; Aoki, Takeshi; Mizuta, Naoki; Hasegawa, Takeshi; Nagatsuka, Kentaro; Nomoto, Yasunobu; Shimizu, Atsushi; Iigaki, Kazuhiko; et al.

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2023/09

JAEA Reports

Fuel unloading work in decommissioning of the prototype fast breeder reactor Monju; First stage of Monju decommissioning project

Shiota, Yuki; Kudo, Junki; Tsuno, Hiromi; Takeuchi, Ryotaro; Ariyoshi, Hideo; Shiohama, Yasutaka; Hamano, Tomoharu; Takagi, Tsuyohiko; Nagaoki, Yoshihiro

JAEA-Technology 2023-002, 87 Pages, 2023/06

JAEA-Technology-2023-002.pdf:8.53MB

In the first stage of Monju decommissioning project, fuel unload work began to be carried out. There are two tasks in this work. One is Fuel Treatment and Storage work that gets rid of sodium on the fuel assemblies unloaded from Ex-Vessel fuel Storage Tank (EVST) and carries it in the storage pool, and the other is Fuel Unloading that the fuel assemblies in the reactor core is replaced with dummy fuels and stored in EVST. Fuel Treatment and Storage work and Fuel Unloading work are performed alternately, and 370 fuel assemblies in the core and 160 fuel assemblies in EVST are all carried to the storage pool. Monju had a large amount of sodium in the reactor vessel and EVST, and there was a residual risk of fuel failure due to the superposition of a large scale sodium fire. Therefore, in the first stage of the Monju decommissioning project, it was decided to take about 5.5 years to remove the residual risk by storing all the fuel rods in the fuel storage pool. There are few Fuel handling system of Sodium Fast Reactor in the world, so the driving record and experience are not enough. So, events that occur even if taken measure are assumed. The following three events apply to this; first, events that are difficult to prevent, events. Second, that are due to lack of experience, and final, events optimization of system is not enough. Plans were taken to suppress these events. This report summarizes the "Monju decommissioning project" work conducted so far in all four campaigns.

Journal Articles

Neutron reflectometry analysis of condensed water layer formation at a solid interface of epoxy resins under high humidity

Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Shundo, Atsuomi*; Kawaguchi, Daisuke*; Tanaka, Keiji*; Aoki, Hiroyuki

Langmuir, 39(29), p.10154 - 10162, 2023/06

 Times Cited Count:4 Percentile:62.38(Chemistry, Multidisciplinary)

Journal Articles

Development of safety design philosophy of HTTR-Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Noguchi, Hiroki; Kurahayashi, Kaoru; Yasuda, Takanori; Nomoto, Yasunobu; Iigaki, Kazuhiko; Sato, Hiroyuki; Sakaba, Nariaki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The safety design philosophy is developed for the HTTR (High Temperature Engineering Test Reactor) heat application test facility connecting high temperature gas-cooled reactor (HTGR) and the hydrogen production plant. The philosophy was proposed to apply proven conventional chemical plant standards to the hydrogen production facility for ensuring public safety against anticipated disasters caused by high pressure and combustible gases. The present study also proposed the safety design philosophy to meet specific safety requirements identified to the nuclear facilities with coupling to the hydrogen production facility such as measures to ensure a capability of normal operation of the nuclear facility against a fire and/or explosion of leaked combustible material, and fluctuation of amount of heat removal occurred in the hydrogen production plant. The safety design philosophy will be utilized to establish its basic and detailed designs of the HTTR-heat application test facility.

606 (Records 1-20 displayed on this page)