Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Arai, Yosuke*; Kuroda, Kenta*; Nomoto, Takuya*; Tin, Z. H.*; Sakuragi, Shunsuke*; Bareille, C.*; Akebi, Shuntaro*; Kurokawa, Kifu*; Kinoshita, Yuto*; Zhang, W.-L.*; et al.
Nature Materials, 21(4), p.410 - 415, 2022/04
Times Cited Count:12 Percentile:76.50(Chemistry, Physical)Kuroda, Kenta*; Arai, Yosuke*; Rezaei, N.*; Kunisada, So*; Sakuragi, Shunsuke*; Alaei, M.*; Kinoshita, Yuto*; Bareille, C.*; Noguchi, Ryo*; Nakayama, Mitsuhiro*; et al.
Nature Communications (Internet), 11, p.2888_1 - 2888_9, 2020/06
Times Cited Count:31 Percentile:78.39(Multidisciplinary Sciences)Fujii, Yasuhiko; Arai, Masatoshi; Kadono, Ryosuke*; Kanaya, Toshiji*; Kamiyama, Takashi*; Niimura, Nobuo*; Nojiri, Hiroyuki*; Noda, Yukio*; Yagi, Takehiko*; Yamada, Kazuyoshi*
Kotai Butsuri, 43(7), p.441 - 450, 2008/07
no abstracts in English
Hayakawa, Takehito; Toh, Yosuke; Oshima, Masumi; Matsuda, Makoto; Hatsukawa, Yuichi; Shizuma, Toshiyuki; Katakura, Junichi; Iimura, Hideki; Mitarai, Shiro*; Zhang, Y.*; et al.
Physical Review C, 68(6), p.067303_1 - 067303_4, 2003/12
Times Cited Count:2 Percentile:21.10(Physics, Nuclear)no abstracts in English
Hayakawa, Takehito; Toh, Yosuke; Oshima, Masumi; Matsuda, Makoto; Hatsukawa, Yuichi; Katakura, Junichi; Iimura, Hideki; Shizuma, Toshiyuki; Mitarai, Shiro*; Sugawara, Masahiko*; et al.
European Physical Journal A, 15(3), p.299 - 302, 2002/11
Times Cited Count:9 Percentile:47.66(Physics, Nuclear)no abstracts in English
Hayakawa, Takehito; Oshima, Masumi; Hatsukawa, Yuichi; Katakura, Junichi; Iimura, Hideki; Matsuda, Makoto; Shinohara, Nobuo; Toh, Yosuke; Mitarai, Shiro*; Shizuma, Toshiyuki; et al.
European Physical Journal A, 9(2), p.153 - 156, 2000/10
Times Cited Count:17 Percentile:65.82(Physics, Nuclear)no abstracts in English
Ideguchi, Eiji*; Liu, M.*; Morikawa, Tsuneyasu*; Toh, Yosuke; Koizumi, Mitsuo; Oshima, Masumi; Kimura, Atsushi; Furutaka, Kazuyoshi; Hatsukawa, Yuichi; Cederwall, B.*; et al.
no journal, ,
no abstracts in English
Arai, Yosuke*; Kuroda, Kenta*; Nomoto, Takuya*; Kurokawa, Kifu*; Shin, S.*; Kubota, Masato; Haga, Yoshinori; Suzuki, Hiroyuki*; Iwasa, Kazuaki*; Arita, Ryotaro*; et al.
no journal, ,
no abstracts in English
Arai, Yosuke*; Kuroda, Kenta*; Tsutsui, Satoshi*; Hirai, Daigoro*; Katayama, N.*; Nomoto, Takuya*; Shin, S.*; Kubota, Masato; Haga, Yoshinori; Suzuki, Hiroyuki*; et al.
no journal, ,
no abstracts in English
Arai, Yosuke*; Kuroda, Kenta*; Nomoto, Takuya*; Hirai, Daigoro*; Katayama, Wago*; Tsutsui, Satoshi*; Tanaka, Hiroaki*; Arita, Masashi*; Shin, S.*; Kubota, Masato; et al.
no journal, ,
no abstracts in English
Arai, Yosuke*; Kuroda, Kenta*; Tsutsui, Satoshi*; Hirai, Daigoro*; Tanaka, Hiroaki*; Yuyang, D.*; Iwata, Takuma*; Katayama, Kazu*; Shin, S.*; Kubota, Masato; et al.
no journal, ,
no abstracts in English
Nakatani, Takeshi; Inamura, Yasuhiro; Ito, Takayoshi; Kajimoto, Ryoichi; Harjo, S.; Arai, Masatoshi; Ohara, Takashi; Nakagawa, Hiroshi; Aoyagi, Tetsuo; Otomo, Toshiya*; et al.
no journal, ,
We have developed the software framework in MLF computing environment from 2006 to 2008. The software framework is the fundamental software for neutron and muon experimental instruments in J-PARC/MLF. Currently, the software framework is installed at 4D Space Access Neutron Spectrometer (BL01), IBARAKI Biological Crystal Diffractometer (BL03), Cold-Neutron Disk-Chopper Spectrometer (BL14), Engineering Materials Diffractometer (BL19) and High Intensity Total Diffractometer (BL21). The features of experimental control, analysis, visualization and authorization are already implemented in the software framework. In this year, we will start the development to introduce the feature of database. We will present the current status and future plan of the software framework.
Arai, Yosuke*; Kuroda, Kenta*; Tsutsui, Satoshi*; Hirai, Daigoro*; Katayama, Wago*; Shin, S.*; Kubota, Masato; Nomoto, Takuya*; Suzuki, Hiroyuki*; Miyasaka, Shigeki*; et al.
no journal, ,
no abstracts in English
Oizumi, Ryo*; Kato, Takeshi*; Arai, Ryosuke*; Kimura, Shun; Takeda, Masaki; Yagi, Keisuke*
no journal, ,
no abstracts in English
Nakatani, Takeshi; Inamura, Yasuhiro; Ito, Takayoshi; Kajimoto, Ryoichi; Aoyagi, Tetsuo; Ohara, Takashi; Otomo, Toshiya*; Yasu, Yoshiji*; Suzuki, Jiro*; Morishima, Takahiro*; et al.
no journal, ,
We have started the commissioning of the neutron scattering experiment instruments since May 2008 in MLF, J-PARC. Simultaneously, we have started the commissioning of the data acquisition and analysis software. Experimental users operate this software through the software framework which we have developed. The software framework was developed based on Python which is an object oriented script language. The system implemented with the software framework can seamlessly measure, analyze and visualize with some modules which are experimental control and data analysis. In this presentation, we report the process of the construction and the current status of the software.
Kimura, Atsushi; Koizumi, Mitsuo; Toh, Yosuke; Oshima, Masumi; Mizumoto, Motoharu; Goto, Jun*; Arai, Yasuo*; Sagara, Masahiro*; Iri, Shinichi*; Kobayashi, Hirotsugu*; et al.
no journal, ,
To measure neutron cross-section data of minor actinides, we construct a Ge-spectrometer utilizing multiple -ray detection method. This spectrometer consists of 30 Ge crystals (40 detector outputs) and 128 BGO anti-Compton shields. Generally, a data acquisition system for such a big Ge spectrometer consists of many NIM modules; it requires large space and huge cost. To overcome these problems, we developed a new data acquisition system with digital signal processing techniques. We reported the conceptual design (and cost) in NSS 2004. In this NSS 2005, we report basic performance of this system (energy resolution, dead time and so on) and results of experiments with the Ge-spectrometer. We measured the energy resolution with a Eurisys clover detector, which is one component of the Ge-spectrometer. Obtained FWHMs (2.5 - 2.8 keV at 1.33 MeV) show good performances as normal MCA even with short shaping time and much higher channel density. The dead time of this system is only 3.2 micro sec per event.