Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 67

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on the specifications of the basic core configurations of the modified STACY

Gunji, Satoshi; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya

Annals of Nuclear Energy, 209, p.110783_1 - 110783_7, 2024/12

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Since the compositions and properties of the fuel debris are uncertain, critical experiments are required to validate calculation codes and nuclear data used for the safety evaluation. For this purpose, the Japan Atomic Energy Agency (JAEA) has been modifying a critical assembly called "STACY." The first criticality of the modified STACY is scheduled for spring 2024. This paper reports the consideration results of the specifications of the basic core configurations of the modified STACY at the first criticality. We prepared two types of gird plates with different neutron moderation conditions (their intervals are 1.50 cm and 1.27 cm). However, there is a limitation on the number of available UO$$_{2}$$ fuel rods. The core configurations for the first criticality satisfying these experimental constraints were designed by computational analysis. A cylindrical core configuration with a 1.50 cm grid plate close to the optimum moderation condition needs 253 fuel rods to reach criticality. As to the 1.27 cm grid plate, we considered core configurations with 2.54 cm intervals by using doubled pitches of the grid plate. It will need 213 fuel rods for the criticality. In addition, we considered the experimental core configuration with steel/concrete simulant rods to simulate fuel debris conditions. This paper shows these core configurations and their evaluated specifications.

JAEA Reports

Proceedings of the 12th International Conference on Nuclear Criticality Safety (ICNC2023); October 1-6, 2023, Sendai International Center, Sendai, Miyagi, Japan

Suyama, Kenya; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Shimada, Kazuya; Fujita, Tatsuya; Ueki, Taro; Nguyen, H.

JAEA-Conf 2024-001, 40 Pages, 2024/07

JAEA-Conf-2024-001.pdf:1.28MB
JAEA-Conf-2024-001-appendix(CD-ROM).zip:163.97MB

The 12th International Conference on Nuclear Criticality Safety (ICNC2023) was held from October 1 to October 6, 2023, at the Sendai International Center (Aobayama, Aoba-ku, Sendai, Miyagi-prefecture 980-0856, Japan), organized by Japan Atomic Energy Agency (JAEA) and co-organized by the Reactor Physics Division of the Atomic Energy Society of Japan (AESJ) and the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (OECD/NEA). 224 presentations passed peer review and 273 technical session registrations, bringing the total number of registered participants to 289, including accompanying persons. Technical tours were also conducted to i) Fukushima Daiichi Nuclear Power Station of TEPCO holdings and Interim Storage Facility Information Center, ii) Nuclear Science Research Institute of JAEA (STACY Renewable Reactor and FCA), iii) NanoTerasu of Tohoku University (synchrotron radiation facility) and Onagawa Nuclear Power Station of Tohoku Electric Power Co., Inc. This report summarizes the conference and compiles the papers that were presented and agreed to be published in the Proceedings.

Journal Articles

Critical experiment plans on the new STACY to clarify the criticality characteristics of the molten core-concrete interaction products

Gunji, Satoshi; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of International Conference on Physics of Reactors (PHYSOR 2024) (Internet), p.227 - 236, 2024/04

It is considered that a large amount of fuel debris was generated in the TEPCO's Fukushima Dai-ichi Nuclear Power Station accident. In particular, the criticality characteristics of the fuel debris, including concrete components, which are products of molten core-concrete interaction (MCCI), have not been well investigated. In this study, to plan physical simulation in critical experiments at the critical assembly using pseudo fuel debris samples including concrete, we evaluated the sensitivity to the effective multiplication factor of the Si and Ca cross sections in the concrete-simulant sample based on the results of elemental analysis of the prototype. These sensitivity calculations were carried out for each sample loading method and composition. We focused on the energy profile of the sensitivity of the $$^{40}$$Ca capture reaction and confirmed that the shape of the sensitivity energy profile changed depending on the sample compositions and neutron moderation conditions. We could know the characteristics of each experimental method by clarifying the trends of sensitivity obtained in different experimental cases. It was found that increasing the amount of concrete in the samples and changing the neutron moderation conditions in the experimental core configurations produced similar changes in the shape of the sensitivity energy profile. This result shows the possibility of reproducing the characteristics of MCCI products through practical critical experiments using concrete materials that do not contain fissile materials.

Journal Articles

Planning of the debris-simulated critical experiments on the new STACY

Gunji, Satoshi; Araki, Shohei; Arakaki, Yu; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 9 Pages, 2023/10

JAEA has been modifying a critical assembly called STACY from a solution system to a light-water moderated heterogeneous system to validate computation results of criticality characteristics of fuel debris generated in the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. To experimentally simulate the composition and characteristics of fuel debris, we will prepare several grid plates which make particular neutron moderation conditions and a number of rod-shaped concrete and stainless-steel materials. Experiments to evaluate fuel debris's criticality characteristics are scheduled using these devices and materials. This series of STACY experiments are planned to measure the reactivity of fuel debris-simulated samples, measure the critical mass of core configurations containing structural materials such as concrete and stainless steels, and the change in critical mass when their arrangement becomes non-uniform. Furthermore, two divided cores experiments are scheduled that statically simulate fuel debris falling, and also scheduled that subcriticality measurement experiments with partially different neutron moderation conditions. The experimental plans have been considered taking into account some experimental constraints. This paper shows the schedule of these experiments, as well as the computation results of the optimized core configurations and expected results for each experiment.

Journal Articles

Inter-codes and nuclear data comparison under collaboration works between IRSN and JAEA

Gunji, Satoshi; Araki, Shohei; Watanabe, Tomoaki; Fernex, F.*; Leclaire, N.*; Bardelay, A.*; Suyama, Kenya

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 9 Pages, 2023/10

Institut de radioprotection et de s$^{u}$ret$'{e}$ nucl$'{e}$aire (IRSN) and Japan Atomic Energy Agency (JAEA) have a long-standing partnership in the field of criticality safety. In this collaboration, IRSN and JAEA are planning a joint experiment using the new STACY critical assembly, modified by JAEA. In order to compare the codes (MVP3, MORET6, etc.) and nuclear data (JENDL and JEFF) used by both institutes in the planning of the STACY experiment, benchmark calculations of the Apparatus B and TCA, which are critical assemblies once owned by both institutes, benchmarks from the ICSBEP handbook and the computational model of the new STACY were performed. Including the new STACY calculation model, the calculations include several different neutron moderation conditions and critical water heights. There were slight systematic differences in the calculation results, which may have originated from the processing and/or format of the nuclear data libraries. However, it was found that the calculated results, including the new codes and the new nuclear data, are in good agreement with the experimental values. Therefore, there are no issues to use them for the design of experiments for the new STACY. Furthermore, the impact of the new TSL data included in JENDL-5 on the effective multiplication factor was investigated. Experimental validation for them will be completed by critical experiments of the new STACY by both institutes.

Journal Articles

Debris-simulated core analysis under fuel procurement constraints in new STACY experiments

Araki, Shohei; Gunji, Satoshi; Arakaki, Yu; Yoshikawa, Tomoki; Murakami, Takahiko; Kobayashi, Fuyumi; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10

New experiments simulating fuel debris in the new criticality assembly, STACY, are designed to contribute to the validation of criticality calculations for criticality control of the fuel debris in the Fukushima Daiichi Nuclear Power Plant accident. In the new STACY experiment, a two-region core consisting of a driver region and a test region was investigated in order to configure a debris-simulated core with under-moderation condition (lattice pitch 1.27-cm) having the constraint of available fuel rod number. The test region with a 1.27-cm lattice pitch is surrounded by the driver region, in which fuel rods are arranged in a checkerboard pattern on a 1.27-cm lattice plate, with a 1.80-cm lattice pitch. Neutron spectra and sensitivity were calculated by using MCNP6 and ENDF/B-VII. The core which has a 17$$times$$17 test region with 373 fuel rods is the largest two-region core under the constraint. It was found that the core which has a 17$$times$$17 test region can simulate the neutron spectra of under-moderation condition in a 13$$times$$13 region inside the test region with the root-mean square percentage error of less than 5%. It was also confirmed that the sensitivity of $$^{28}$$Si and $$^{40}$$Ca (n,$$gamma$$) reactions when the concrete simulant, was loaded could be simulated.

Journal Articles

Study on criticality safety control of fuel debris for validation of methodology applied to the safety regulation

Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Yamane, Yuichi; Izawa, Kazuhiko; Nagaya, Yasunobu; Kikuchi, Takeo; et al.

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 6 Pages, 2023/10

To remove and store safely the fuel debris generated by the severe accident of the Fukushima Daiichi Nuclear Power Station in 2011 is one of the most important and challenging topics for decommissioning of the damaged reactors in Fukushima. To validate the adopted method for the evaluation of criticality safety control of the fuel debris through comparison with the experimental data obtained by the criticality experiments, the Nuclear Regulation Authority (NRA) of Japan funds a research and development project which was entrusted to the Nuclear Safety Research Center (NSRC) of Japan Atomic Energy Agency (JAEA) from 2014. In this project, JAEA has been conducting such activities as i) comprehensive computation of the criticality characteristics of the fuel debris and making database (criticality map of the fuel debris), ii) development of new continuous energy Monte Carlo code, iii) evaluation of criticality accident and iv) modification of the critical assembly STACY for the experiments for validation of criticality safety control methodology. After the last ICNC2019, the project has the substantial progress in the modification of STACY which will start officially operation from May 2024 and the development of the Monte Carlo Code "Solomon" suitable for the criticality calculation for materials having spatially random distribution complies with the power spectrum. We present the whole picture of this research and development project and status of each technical topics in the session.

Journal Articles

Study on the basic core analysis of the new STACY

Gunji, Satoshi; Yoshikawa, Tomoki; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10

Since the compositions and properties of the fuel debris are uncertain, critical experiments are required to validate calculation codes and nuclear data used for the safety evaluation. For this purpose, JAEA has been modifying a critical assembly called "STACY". The first criticality of the new STACY is scheduled for spring 2024. This paper reports the consideration results of the core configurations of the new STACY at the first criticality. We prepared two sets of gird plates with different neutron moderation conditions (their intervals are 1.50 cm and 1.27 cm). However, there is a limitation on the number of available UO$$_{2}$$ fuel rods. In addition, we would like to set the critical water heights for the first criticality at around 95 cm. This is to avoid the reactive effect of the aluminum alloy middle grid plates (Approx. 98 cm high). The core configurations for the first criticality satisfying these conditions were constructed by computational analysis. A square core configuration with the 1.50 cm grid plate that is close to the optimum moderation condition needs 261 fuel rods to reach criticality. As to the 1.27 cm grid plate, we considered two core configurations with 1.80 cm intervals by using a checkerboard arrangement. One of them has two regions core configuration with 1.27 and 1.80 cm intervals, and the other has only 1.80 cm intervals. They need 341 and 201 fuel rods for the criticality, respectively. This paper shows these three core configurations and their calculation models.

Journal Articles

Validation of integrated thermal power measurement using solution fuel STACY experimental data for modified STACY performance test

Araki, Shohei; Gunji, Satoshi; Arakaki, Yu; Murakami, Takahiko; Yoshikawa, Tomoki; Hasegawa, Kenta; Tada, Yuta; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 4th Reactor Physics Asia Conference (RPHA2023) (Internet), 4 Pages, 2023/10

To conduct integrated thermal power measurements for the performance test of the modified STACY, we re-analyzed the experimental data measured in the solution fuel STACY using the activation method. We validated its feasibility under the limited number of activation detectors. The re-analyzed results of the activation method by using MVP and PHITS with JENDL-4.0 indicated that the effect of the difference of the position between activation detectors was small enough, and the results agreed with that of the fission product analysis within almost 10%. It is conceivable that the activation method could be adopted instead of the fission product analysis.

Journal Articles

Development of experimental core configurations to clarify k$$_{eff}$$ variations by nonuniform core configurations

Gunji, Satoshi; Araki, Shohei; Suyama, Kenya

Nuclear Science and Engineering, 197(8), p.2017 - 2029, 2023/08

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

The fuel debris generated by the accident at the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant is expected to have not only heterogeneous but also nonuniform compositions. Similarly, damaged fuel assemblies remaining in the reactor vessels also have nonuniform configurations due to some missing fuel rods. This non-uniformity may cause changing neutron multiplication factors. The effect of non-uniformity on the neutron multiplication factor is clarified by computations, and the possibility of experimentally validating the computations used for criticality management is being investigated. For this purpose, in this study the criticality effects of several core configurations of a new critical assembly, STACY, of the Japan Atomic Energy Agency with nonuniform arrangements of uranium oxide fuel rods, concrete rods, and stainless-steel rods were studied to confirm benchmarking potential. The difference in these arrangements changed the neutron multiplication factor by more than 1 $. We confirmed that changes in local neutron moderation conditions and the clustering of specific components caused this effect. In addition, the feasibility of benchmark experimental cores with nonuniform arrangements is evaluated. If benchmarking of such experiments could be realized, it would help to validate calculation codes and to develop criticality management methods by machine learning.

Journal Articles

Revision of the criticality safety handbook in light of the reality of the nuclear fuel cycle in Japan; With a view to transportation and storage of fuel debris

Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai

Proceedings of 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM22) (Internet), 5 Pages, 2023/06

Since the 1990s, the importance of the handbook has changed significantly, as the computational power has improved and continuous energy Monte Carlo codes have become widely used, which enables highly accurate criticality calculations, when necessary, irrespective of the complexity of the system. Because the value of performing a large number of calculations in advance and summarizing the data has decreased, since the second edition was published publicly in 1999, there has been no revision of criticality safety handbooks in Japan for nearly a quarter of a century. In Japan, where the Fukushima Daiichi Nuclear Power Plant accident occurred in 2011, it became necessary to deal with criticality safety issues in the transport and storage of the fuel debris which contains complex constituent elements, and the summary the criticality safety management for such material is an urgent issue. In the area of burnup credit, the transport and storage of fuel assemblies with low achieved burnups due to the consequences of accidents might be the problem. In addition, nuclear data, which is the input for the continuous energy Monte Carlo code, has been improved several times, now JENDL-5 is available from the end of 2021, and its incorporation becomes a need in the field. This report provides an overview of the latest criticality safety research in Japan and the planned revision of the Criticality Safety Handbook, which could be applied to the transport and storage sectors.

Journal Articles

Neutron production in the interaction of 200-MeV deuterons with Li, Be, C, Al, Cu, Nb, In, Ta, and Au

Watanabe, Yukinobu*; Sadamatsu, Hiroki*; Araki, Shohei; Nakano, Keita; Kawase, Shoichiro*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.

EPJ Web of Conferences, 284, p.01041_1 - 01041_4, 2023/05

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Intensive fast neutron sources using deuteron accelerators have been proposed for the study of medical RI production, radiation damage for fusion reactor materials, nuclear transmutation of radioactive waste, and so on. Neutron production data from various materials bombarded by deuterons are required for the design of such neutron sources. In the present work, we have conducted a systematic measurement of double-differential neutron production cross sections (DDXs) for a wide atomic number range of targets (Li, Be, C, Al, Cu, Nb, In, Ta, and Au) at an incident energy of 200 MeV in the Research Center for Nuclear Physics (RCNP), Osaka University. A deuteron beam accelerated to 200 MeV was transported to the neutron experimental hall and focused on a thin target foil. Emitted neutrons from the target were detected by two different-size EJ301 liquid organic scintillators located at two distances of 7 m and 20 m, respectively. The neutron DDXs were measured at six angles from 0$$^{circ}$$ to 25$$^{circ}$$). The neutron energy was determined by a conventional time-of-flight (TOF) method. The measured DDXs were compared with theoretical model calculations by the DEUteron-induced Reaction Analysis Code System (DEURACS) and PHITS. The result indicated that the DEURACS calculation provides better agreement with the measured DDXs than the PHITS calculation.

Journal Articles

Evaluation of critical experimental core configurations to simulate non-uniform fuel debris

Gunji, Satoshi; Araki, Shohei; Suyama, Kenya; Izawa, Kazuhiko

Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022) (Internet), 10 Pages, 2022/05

The fuel debris is expected to have not only heterogeneous but also non-uniform compositions. Therefore, the calculation method used in their criticality management is required to be validated experimentally. In this study, several core configurations of a new critical assembly "STACY" of JAEA with non-uniform arrangements of uranium oxide fuel rods, concrete rods and stainless steel rods, which are components of the fuel debris, were studied. In each case, the median value of 100 sample patterns was larger than the mean effective multiplication factor. It was also confirmed that there are differences in the effective multiplication factor of more than one dollar by the pattern changing, and that the neutron spectra can change significantly by changing the local neutron moderation conditions. In particular, the effective multiplication factor became smaller when over-moderated regions with large water-to-fuel ratios were formed in the core configurations due to increases in thermal neutron absorption. Such criticality experiments with non-uniform arrangements of multiple compositions will be useful to evaluate the validity of the calculation code.

Journal Articles

Effect of moderation condition on neutron multiplication factor distribution in $${1/f^beta}$$ random media

Araki, Shohei; Yamane, Yuichi; Ueki, Taro; Tonoike, Kotaro

Nuclear Science and Engineering, 195(10), p.1107 - 1117, 2021/10

 Times Cited Count:2 Percentile:24.93(Nuclear Science & Technology)

Criticality control of random media such as fuel debris is one of the most important safety issues in post-accident management. $$1/f^beta$$ spectrum randomizing model is expected to simulate such random media because it is well known that the $$1/f^beta$$ noise can describe a diverse range of random and disordered natural phenomena. In this paper, we focused on the relationship between the multiplication factor and moderation condition in the $$1/f^beta$$ random media. A number of random media were realized with the $$1/f^beta$$ spectrum randomizing model that is based on the Randomized Weierstrass function (RWF). The volume ratio of concrete to fuel was adopted as an index for the moderation condition. The multiplication factors were calculated with a two-energy group Monte Carlo calculation. The calculation results were analyzed by using variance, skewness, and kurtosis. Those statistical parameters had an extreme value around the optimum moderation condition. This result suggested that it is possible to predict the rough trend of variation range, distortion, and outlier of multiplication factors in the $$1/f^beta$$ random media.

Journal Articles

A New critical assembly: STACY

Araki, Shohei; Gunji, Satoshi; Tonoike, Kotaro; Kobayashi, Fuyumi; Izawa, Kazuhiko; Ogawa, Kazuhiko

Proceedings of European Research Reactor Conference 2020 (RRFM 2020) (Internet), 7 Pages, 2020/10

Critical experiments of thermal neutron system are still expected to be playing an important role for wide technical issues. The Japan Atomic Energy Agency (JAEA) is renovating the Static Experimental Critical Facility (STACY) to maintain the experimental capability. The new STACY is designed as a general-purpose criticality facility. Its core mainly consists of low enriched UO$$_{2}$$ fuel rods, grid plates, and light water moderator. The first experiment campaign in the new STACY aims to obtain criticality characteristics of fuel debris, which will be used in validation of criticality analysis methods. The designs of the experimental core configurations are in progress.

Journal Articles

Study of the Li($$d,xn$$) reaction for the development of accelerator-based neutron sources

Watanabe, Yukinobu*; Sadamatsu, Hiroki*; Araki, Shohei*; Nakano, Keita*; Kawase, Shoichiro*; Kin, Tadahiro*; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; et al.

EPJ Web of Conferences, 239, p.20012_1 - 20012_4, 2020/09

 Times Cited Count:2 Percentile:83.55(Nuclear Science & Technology)

Accelerator-based neutron sources induced by deuteron beams are attractive for study of nuclear transmutation of radioactive waste as well as radiation damage for fusion reactor materials. In the present work, we have carried out a Double Differential cross section (DDX) measurement for Li at 200 MeV in the Research Center for Nuclear Physics (RCNP), Osaka University. A deuteron beam accelerated to 200 MeV was transported to the neutron experimental hall and focused on a thin Li target. Emitted neutrons from the target were detected by two different-size EJ301 liquid organic scintillators located at two distances of 7 m and 20 m, respectively. The neutron DDXs were measured at six angles from 0$$^{circ}$$ to 25$$^{circ}$$). The neutron detection efficiencies of the detectors were calculated by SCINFUL-QMD code. We will present the results of the present DDX measurement and compare them with theoretical model calculations with DEURACS and PHITS.

Journal Articles

Effect of $$beta$$ on effective multiplication factor in 1/f$$^{beta}$$ spectrum random system

Araki, Shohei; Yamane, Yuichi; Ueki, Taro; Tonoike, Kotaro

Proceedings of International Conference on the Physics of Reactors; Transition To A Scalable Nuclear Future (PHYSOR 2020) (USB Flash Drive), 8 Pages, 2020/03

We investigated the $$beta$$ dependence of the effective multiplication factor (k$$_{rm eff}$$) in the 1/f$$^{beta}$$ noise model. We conducted the two-group Monte Carlo calculations. We found that the standard deviation of the k$$_{rm eff}$$ distribution showed the positive correlation with the $$beta$$ value because the spatial distribution of the fuel became less uniform as the $$beta$$ value increased.

Journal Articles

Criticality characteristics of fuel debris mixed by fuels with different burnups based on fuel loading pattern

Watanabe, Tomoaki; Okubo, Kiyoshi*; Araki, Shohei; Tonoike, Kotaro

Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 8 Pages, 2019/09

Journal Articles

Role of multichance fission in the description of fission-fragment mass distributions at high energies

Hirose, Kentaro; Nishio, Katsuhisa; Tanaka, Shoya*; L$'e$guillon, R.*; Makii, Hiroyuki; Nishinaka, Ichiro*; Orlandi, R.; Tsukada, Kazuaki; Smallcombe, J.*; Vermeulen, M. J.; et al.

Physical Review Letters, 119(22), p.222501_1 - 222501_6, 2017/12

 Times Cited Count:57 Percentile:91.85(Physics, Multidisciplinary)

Fission-fragment mass distributions were measured for $$^{237-240}$$U, $$^{239-242}$$Np and $$^{241-244}$$Pu populated in the excitation-energy range from 10 to 60 MeV by multi-nucleon transfer channels in the reaction $$^{18}$$O + $$^{238}$$U at the JAEA tandem facility. Among them, the data for $$^{240}$$U and $$^{240,241,242}$$Np were observed for the first time. It was found that the mass distributions for all the studied nuclides maintain a double-humped shape up to the highest measured energy in contrast to expectations of predominantly symmetric fission due to the washing out of nuclear shell effects. From a comparison with the dynamical calculation based on the fluctuation-dissipation model, this behavior of the mass distributions was unambiguously attributed to the effect of multi-chance fission.

Journal Articles

Deuteron nuclear data for the design of accelerator-based neutron sources; Measurement, model analysis, evaluation, and application

Watanabe, Yukinobu*; Kin, Tadahiro*; Araki, Shohei*; Nakayama, Shinsuke; Iwamoto, Osamu

EPJ Web of Conferences, 146, p.03006_1 - 03006_6, 2017/09

 Times Cited Count:3 Percentile:84.80(Nuclear Science & Technology)

The design of $$(d,xn)$$ neutron sources requires comprehensive nuclear data of deuteron-induced reactions. Therefore, we have launched a research project on deuteron nuclear data, which is composed of measurements, theoretical model code development, cross section evaluation, and application to production of radioisotopes for medical use. Our goal is to develop a state-of-art deuteron nuclear data library up to 200 MeV necessary for the design of accelerator neutron sources with deuteron beam. The present status is reported in the presentation.

67 (Records 1-20 displayed on this page)