Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fujiwara, Hidenori*; Nakatani, Yasuhiro*; Aratani, Hidekazu*; Kanai-Nakata, Yuina*; Yamagami, Kohei*; Hamamoto, Satoru*; Kiss, Takayuki*; Sekiyama, Akira*; Tanaka, Arata*; Ebihara, Takao*; et al.
New Physics; Sae Mulli, 73(12), p.1062 - 1066, 2023/12
Fujiwara, Hidenori*; Nakatani, Yasuhiro*; Aratani, Hidekazu*; Kanai, Yuina*; Yamagami, Kohei*; Hamamoto, Satoru*; Kiss, Takayuki*; Yamasaki, Atsushi*; Higashiya, Atsushi*; Imada, Shin*; et al.
Physical Review B, 108(16), p.165121_1 - 165121_10, 2023/10
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Aratani, Hidekazu*; Nakatani, Yasuhiro*; Fujiwara, Hidenori*; Kawada, Moeki*; Kanai, Yuina*; Yamagami, Kohei*; Fujioka, Shuhei*; Hamamoto, Satoru*; Kuga, Kentaro*; Kiss, Takayuki*; et al.
Physical Review B, 98(12), p.121113_1 - 121113_6, 2018/09
Times Cited Count:5 Percentile:23.50(Materials Science, Multidisciplinary)Nakatani, Yasuhiro*; Aratani, Hidekazu*; Fujiwara, Hidenori*; Mori, Takeo*; Tsuruta, Atsushi*; Tachibana, Shoichi*; Yamaguchi, Takashi*; Kiss, Takayuki*; Yamasaki, Atsushi*; Yasui, Akira*; et al.
Physical Review B, 97(11), p.115160_1 - 115160_7, 2018/03
Times Cited Count:5 Percentile:23.50(Materials Science, Multidisciplinary)Nagai, Kodai*; Fujiwara, Hidenori*; Aratani, Hidekazu*; Fujioka, Shuhei*; Yomosa, Hiroshi*; Nakatani, Yasuhiro*; Kiss, Takayuki*; Sekiyama, Akira*; Kuroda, Fumiaki*; Fujii, Hitoshi*; et al.
Physical Review B, 97(3), p.035143_1 - 035143_8, 2018/01
Times Cited Count:23 Percentile:69.62(Materials Science, Multidisciplinary)We have studied the electronic structure of ferrimagnetic MnVAl single crystals by means of soft X-ray absorption spectroscopy (XAS), X-ray absorption magnetic circular dichroism (XMCD), and resonant soft X-ray inelastic scattering (RIXS). We have successfully observed the XMCD signals for all the constituent elements. The Mn L XAS and XMCD spectra are reproduced by spectral simulations based on density-functional theory, indicating the itinerant character of the Mn 3 states. On the other hand, the V 3 electrons are rather localized since the ionic model can qualitatively explain the V L XAS and XMCD spectra. This picture is consistent with local excitations revealed by the V L RIXS.
Nakatani, Yasuhiro*; Fujiwara, Hidenori*; Aratani, Hidekazu*; Mori, Takeo*; Tachibana, Shoichi*; Yamaguchi, Takashi*; Kiss, Takayuki*; Yamasaki, Atsushi*; Yasui, Akira*; Yamagami, Hiroshi*; et al.
Journal of Electron Spectroscopy and Related Phenomena, 220, p.50 - 53, 2017/01
Times Cited Count:2 Percentile:15.91(Spectroscopy)We report the soft X-ray angle-resolved photoemission study for LaNiGe to reveal the electronic structures derived from non-4 bands of the heavy fermion compound CeNiGe. The photoemission spectra recorded at the La M absorption edges clearly show the enhancement of the La 5 components in the valence band spectra. The circular dichroism of photoemission spectra reveals the band-dependent dichroic response due to the orbital symmetry.
Yamasaki, Atsushi*; Fujiwara, Hidenori*; Tachibana, Shoichi*; Iwasaki, Daisuke*; Higashino, Yuji*; Yoshimi, Chiaki*; Nakagawa, Koya*; Nakatani, Yasuhiro*; Yamagami, Kohei*; Aratani, Hidekazu*; et al.
Physical Review B, 94(11), p.115103_1 - 115103_10, 2016/11
Times Cited Count:17 Percentile:59.01(Materials Science, Multidisciplinary)In this study, we systematically investigate three-dimensional(3D) momentum-resolved electronic structures of Ruddlesden-Popper-type iridium oxides SrIrO using soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES). Our results provide direct evidence of an insulator-to-metal transition that occurs upon increasing the dimensionality of the IrO-plane structure. This transition occurs when the spin-orbit-coupled = 1/2 band changes its behavior in the dispersion relation and moves across the Fermi energy. By scanning the photon energy over 350 eV, we reveal the 3D Fermi surface in SrIrO and -dependent oscillations of photoelectron intensity in SrIrO. To corroborate the physics deduced using low-energy ARPES studies, we propose to utilize SX-ARPES as a powerful complementary technique, as this method surveys more than one whole Brillouin zone and provides a panoramic view of electronic structures.