Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High spatial resolution ZnO scintillator for an in situ imaging device in EUV region

Arita, Ren*; Nakazato, Tomoharu*; Shimizu, Toshihiko*; Yamanoi, Kohei*; Empizo, M.*; Hori, Tatsuhiro*; Fukuda, Kazuhito*; Minami, Yuki*; Sarukura, Nobuhiko*; Maruyama, Momoko; et al.

Optical Materials, 36(12), p.2012 - 2015, 2014/10

 Times Cited Count:7 Percentile:38.97(Materials Science, Multidisciplinary)

A single shot image of a ZnO crystal excited by the EUV laser of Kansai Photon Science Institute was captured. The evaluated EUV beam waist radii from the ZnO emission pattern along the horizontal and vertical axes are 5.0 and 4.7$$mu$$m, respectively. The expected focal spot size of EUV laser and the spatial resolution of the magnifier (including the Schwarzschild objectives and lenses) are however 1 and 4$$mu$$m, respectively. The discrepancy on the spatial resolutions is attributed to exciton diffusion. We estimated the ZnO exciton diffusion length from the effective decay time which is shortened by exciton-exciton collision quenching and which is dependence on excitation energy density. Our results indicate that the short lifetime of ZnO is required to improve the spatial resolution.

1 (Records 1-1 displayed on this page)
  • 1