Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 83

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

First spectroscopic study of $$^{51}$$Ar by the ($$p$$,2$$p$$) reaction

Juh$'a$sz, M. M.*; Elekes, Z.*; Sohler, D.*; Utsuno, Yutaka; Yoshida, Kazuki; Otsuka, Takaharu*; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Baba, Hidetada*; et al.

Physics Letters B, 814, p.136108_1 - 136108_8, 2021/03

The nuclear structure of $$^{51}$$Ar was studied by the ($$p$$,2$$p$$) reaction using $$gamma$$-ray spectroscopy for the bound and unbound states. Comparing the results to our shell-model calculations, two bound and six unbound states were established. The low cross sections populating the two bound states of $$^{51}$$Ar could be interpreted as a clear signature for the presence of significant sub-shell closures at neutron numbers 32 and 34 in argon isotopes.

Journal Articles

$$N$$ = 32 shell closure below calcium; Low-lying structure of $$^{50}$$Ar

Cort$'e$s, M. L.*; Rodriguez, W.*; Doornenbal, P.*; Obertelli, A.*; Holt, J. D.*; Men$'e$ndez, J.*; Ogata, Kazuyuki*; Schwenk, A.*; Shimizu, Noritaka*; Simonis, J.*; et al.

Physical Review C, 102(6), p.064320_1 - 064320_9, 2020/12

 Times Cited Count:0 Percentile:100(Physics, Nuclear)

Low-lying excited states in the $$N$$ = 32 isotope $$^{50}$$Ar were investigated by in-beam $$gamma$$-ray spectroscopy following proton- and neutron-knockout, multinucleon removal, and proton inelastic scattering at the RIKEN Radioactive Isotope Beam Factory. The energies of the two previously reported transitions have been confirmed, and five additional states are presented for the first time, including a candidate for a 3$$^{-}$$ state. The level scheme built using $$gamma$$ $$gamma$$ coincidences was compared to shell-model calculations in the $$sd-pf$$ model space and to ${it ab initio}$ predictions based on chiral two- and three-nucleon interactions. Theoretical proton- and neutron-knockout cross sections suggest that two of the new transitions correspond to 2$$^{+}$$ states, while the previously proposed 4$$^{+}_{1}$$ state could also correspond to a 2$$^{+}$$ state.

Journal Articles

How different is the core of $$^{25}$$F from $$^{24}$$O$$_{g.s.}$$ ?

Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri. A.*; Hwang, S. H.*; et al.

Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05

 Times Cited Count:3 Percentile:20.53(Physics, Multidisciplinary)

The structure of a neutron-rich $$^{25}$$F nucleus is investigated by a quasifree ($$p,2p$$) knockout reaction. The sum of spectroscopic factors of $$pi 0d_{5/2}$$ orbital is found to be 1.0 $$pm$$ 0.3. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus, and the core consists of $$sim$$35% $$^{24}$$O$$_{rm g.s.}$$, and $$sim$$65% excited $$^{24}$$O. The result shows that the $$^{24}$$O core of $$^{25}$$F nucleus significantly differs from a free $$^{24}$$O nucleus. The result may infer that the addition of the $$0d_{5/2}$$ proton considerably changes the neutron structure in $$^{25}$$F from that in $$^{24}$$O, which could be a possible mechanism responsible for the oxygen dripline anomaly.

Journal Articles

Shell evolution of $$N$$ = 40 isotones towards $$^{60}$$Ca; First spectroscopy of $$^{62}$$Ti

Cort$'e$s, M. L.*; Rodriguez, W.*; Doornenbal, P.*; Obertelli, A.*; Holt, J. D.*; Lenzi, S. M.*; Men$'e$ndez, J.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; et al.

Physics Letters B, 800, p.135071_1 - 135071_7, 2020/01

 Times Cited Count:6 Percentile:3.03(Astronomy & Astrophysics)

Excited states in the $$N$$ = 40 isotone $$^{62}$$Ti were populated via the $$^{63}$$V($$p$$,$$2p$$)$$^{62}$$Ti reaction at $$sim$$200 MeV/nucleon at the Radioactive Isotope Beam Factory and studied using $$gamma$$-ray spectroscopy. The energies of the $$2_1^+ rightarrow 0_{rm gs}^+$$ and $$4_1^+ rightarrow 2_1^+$$ transitions, observed here for the first time, indicate a deformed Ti ground state. These energies are increased compared to the neighboring $$^{64}$$Cr and $$^{66}$$Fe isotones, suggesting a small decrease of quadrupole collectivity. The present measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce our findings.

Journal Articles

Quasifree neutron knockout from $$^{54}$$Ca corroborates arising $$N=34$$ neutron magic number

Chen, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Chazono, Yoshiki*; Navr$'a$til, P.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Raimondi, F.*; et al.

Physical Review Letters, 123(14), p.142501_1 - 142501_7, 2019/10

 Times Cited Count:12 Percentile:8.93(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Zr separation from high-level liquid waste with a novel hydroxyacetoamide type extractant

Morita, Keisuke; Suzuki, Hideya; Matsumura, Tatsuro; Takahashi, Yuya*; Omori, Takashi*; Kaneko, Masaaki*; Asano, Kazuhito*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.464 - 468, 2019/09

High level liquid waste (HLLW) contains several radionuclides with half-lives longer than 10$$^{6}$$ year. For reduce environmental burden of waste disposal, minor actinoids and long-lived fission products will to be partitioned and transmuted. JAEA and Toshiba developed process for recovering Se, Zr, Pd and Cs from HLLW. Solvent extraction for Zr with novel extractant, ${it N,N}$-didodecyl-2-hydroxyacetoamide (HAA) was detailed. The HAA system showed high selectivity for Zr, as indicated by the extraction order of Zr $$>$$ Mo $$>$$ Pd $$>$$ Ag $$approx$$ Sb $$>$$ Sn $$>$$ Lns $$>$$ Fe. The extracted species was determined as Zr(HAA)$$_{3}$$(NO$$_{3}$$)$$_{4}$$(HNO$$_{3}$$)$$_{x}$$. A continuous countercurrent extraction with HAA was applied to a simulated, concentrated HLLW after Pd, Se, and Cs removal, where the quantitative extraction of Zr and Mo was effectively demonstrated.

Journal Articles

Reduction and resource recycling of high-level radioactive wastes through nuclear transmutation; Isolation techniques of Pd, Zr, Se and Cs in simulated high level radioactive waste using solvent extraction

Sasaki, Yuji; Morita, Keisuke; Ito, Keisuke; Suzuki, Shinichi; Shiwaku, Hideaki; Takahashi, Yuya*; Kaneko, Masaaki*; Omori, Takashi*; Asano, Kazuhito*

Proceedings of International Nuclear Fuel Cycle Conference (GLOBAL 2017) (USB Flash Drive), 4 Pages, 2017/09

no abstracts in English

Journal Articles

A 3 MeV linac for development of accelerator components at J-PARC

Kondo, Yasuhiro; Asano, Hiroyuki*; Chishiro, Etsuji; Hirano, Koichiro; Ishiyama, Tatsuya; Ito, Takashi; Kawane, Yusuke; Kikuzawa, Nobuhiro; Meigo, Shinichiro; Miura, Akihiko; et al.

Proceedings of 28th International Linear Accelerator Conference (LINAC 2016) (Internet), p.298 - 300, 2017/05

We have constructed a linac for development of various accelerator components at J-PARC. The ion source is same as the J-PARC linac's, and the RFQ is a used one in the J-PARC linac. The beam energy is 3 MeV and nominal beam current is 30 mA. The accelerator has been already commissioned, and the first development program, laser-charge-exchange experiment for the transmutation experimental facility, has been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

Development of beam scrapers using a 3-Mev linac at J-PARC

Hirano, Koichiro; Asano, Hiroyuki; Ishiyama, Tatsuya; Ito, Takashi; Okoshi, Kiyonori; Oguri, Hidetomo; Kondo, Yasuhiro; Kawane, Yusuke; Kikuzawa, Nobuhiro; Sato, Yoshikatsu; et al.

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.310 - 313, 2016/11

We have used a beam scraper with the incident angle of 65deg to reduce the beam power deposition density in the MEBT between a 324 MHz RFQ and a 50-MeV DTL of the J-PARC linac. The 65$$^{circ}$$ scraper was irradiated by the H$$^{-}$$ beam up to particle number of 1.47E22. We observed a lot of surface projections with several hundred micrometers high in the beam irradiation damage on the scraper by using the laser microscope. In order to study the limits of scrapers, we constructed a new 3 MeV linac at J-PARC. We will conduct the scraper irradiation test at the end of this year.

Journal Articles

Applicability evaluation of candidate technologies for nuclear material quantification in fuel debris at Fukushima Daiichi Nuclear Power Station; Passive neutron technique (Interim report)

Nagatani, Taketeru; Kosuge, Yoshihiro*; Shirato, Atsuhiko*; Sato, Takashi*; Shiromo, Hideo; Asano, Takashi

Proceedings of INMM 57th Annual Meeting (Internet), 10 Pages, 2016/07

Journal Articles

Study on improving measurement accuracy of Epithermal Neutron Measurement Multiplicity Counter (ENMC)

Nomi, Takayoshi; Kawakubo, Yoko; Nagatani, Taketeru; Shiromo, Hideo; Asano, Takashi; Menlove, H. O.*; Swinhoe, M. T.*; Browne, M. C.*

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

Journal Articles

Welding technology on sector assembly of the JT-60SA vacuum vessel

Shibama, Yusuke; Okano, Fuminori; Yagyu, Junichi; Kaminaga, Atsushi; Miyo, Yasuhiko; Hayakawa, Atsuro*; Sagawa, Keiich*; Mochida, Tsutomu*; Morimoto, Tamotsu*; Hamada, Takashi*; et al.

Fusion Engineering and Design, 98-99, p.1614 - 1619, 2015/10

 Times Cited Count:2 Percentile:75.47(Nuclear Science & Technology)

The JT-60SA vacuum vessel (150 tons) is a double wall torus structure and the maximum major radius of 5.0 m and height of 6.6 m. The manufacturing design concept is that the vessel is split in the 10 toroidal sectors manufactured at factory, and assembled on-site; seven of the 40-degree sectors, two of the 30-degree beside final one, and the final of the 20-degree. The final sector is assembled with the VV thermal shield and toroidal field magnets into the 340-degree as prepared in one sector. Sectors are temporally fitted on-site and adjusted one over the other before the assembly. After measurement of the dimensions and the reference, these sectors are transferred onto the cryostat base. First, three 80-degree sectors are manufactured with mating each 40-degree sector by direct joint welding. The rest sectors including the final sector are jointed with splice plates. Welding manipulator and its guide rails are used for these welding. In this paper, the detail of the VV sectors assembly including the final sector is explained. Welding technologies to joint the two of 40-degree sectors are reported with the present manufacturing status and the welding trial on the vertical stub with the partial mock-up of the final sector are discussed with the assembly process.

Journal Articles

Experimental studies of passive neutron measurement for fuel debris at Fukushima Daiichi Nuclear Power Plants

Nagatani, Taketeru; Shirato, Atsuhiko*; Kosuge, Yoshihiro*; Sato, Takashi*; Kawakubo, Yoko; Shiromo, Hideo; Asano, Takashi

Proceedings of INMM 56th Annual Meeting (Internet), 10 Pages, 2015/07

As one of the candidate material accountancy technologies for the fuel debris at Fukushima Daiichi Nuclear Power Plants (1F), we propose the application of a passive neutron technique. The applicability of the new concept to the fuel debris at 1F was evaluated by simulation and the results were presented at the last INMM annual meeting. As the next phase, we conducted experimental tests to confirm the validity of the simulation results. Because actual fuel debris or irradiated fuel cannot be handled at our facility due to a licensing limitation, un-irradiated MOX samples, neutron absorbers and Cf-252 sources were utilized as the best available material to imitate the property of the fuel debris and various configurations were measured using an Epithermal Neutron Multiplicity Counter. The fissile mass in the samples, neutron absorber mass surrounding the samples and intensity of Cf-252 source were varied to confirm the correlation between DDSI response and the leakage multiplication. Test results agreed well with the trend of the simulation results. This indicates that DDSI has sufficient capability to evaluate the leakage multiplication of a sample which includes an unknown amount of fissile material and neutron absorber such as the fuel debris at 1F. This paper provides experimental studies of passive neutron measurement based on the combination of DDSI technique and coincidence counting for fuel debris at 1F.

Journal Articles

JAEA's contribution to development of J-MOX safeguards system

Nagatani, Taketeru; Nakajima, Shinji; Kawakubo, Yoko; Shiromo, Hideo; Asano, Takashi; Marlow, J.*; Swinhoe, M. T.*; Menlove, H.*; Rael, C.*; Kawasue, Akane*; et al.

Book of Abstracts, Presentations and Papers of Symposium on International Safeguards; Linking Strategy, Implementation and People (Internet), 8 Pages, 2015/03

Journal Articles

Monte Carlo N-Particle eXtended (MCNPX) simulation for passive neutron measurement of fuel debris at Fukushima Daiichi Nuclear Power Plants

Nagatani, Taketeru; Nakajima, Shinji; Kosuge, Yoshihiro*; Shiromo, Hideo; Asano, Takashi

Proceedings of INMM 55th Annual Meeting (Internet), 10 Pages, 2014/07

Meltdown of the reactor cores of Units 1-3 occurred at Fukushima Daiichi Nuclear Power Plants (1F). Fuel debris at 1F contains minor actinides and fission products and neutron absorber. These materials make it difficult to quantify fertile nuclear materials in fuel debris by the conventional passive neutron technique. We consider that DDSI and PNAR which focused on fissile material are promising techniques to quantify the nuclear materials in the fuel debris. A concept of application of these techniques to fuel debris measurement was investigated and presented at the last INMM annual meeting. In order to evaluate the applicability of these techniques to fuel debris measurement, we investigated the neutron behavior in the fuel debris by using MCNPX simulation code. Because property of fuel debris is not clear, source term data used were prepared by referring TMI data. This paper provides results of MCNPX simulation for fuel debris measurement at 1F with passive neutron techniques.

Journal Articles

Performance test results for the Advanced Fuel Assembly Assay System (AFAS) on the active length verification of LWR MOX fuel assembly by neutron detectors

Nakajima, Shinji; Nagatani, Taketeru; Shiromo, Hideo; Asano, Takashi; Marlow, J. B.*; Swinhoe, M. T.*; Menlove, H. O.*; Rael, C. D.*; Kawasue, Akane*; Iso, Shoko*; et al.

Proceedings of INMM 55th Annual Meeting (Internet), 10 Pages, 2014/07

The Advanced Fuel Assembly Assay System (AFAS) is an unattended non-destructive assay (NDA) system by neutron measurement to verify the plutonium amount in an LWR plutonium and uranium mixed oxide (MOX) fuel assembly. The assembly will be fabricated in the MOX fuel fabrication plant under construction by the Japan Nuclear Fuel Limited. The AFAS has been developed by Los Alamos National Laboratory under the auspices of the Secretariat of Nuclear Regulation Authority in Japan. The AFAS is the first NDA system which will verify the active length of the assembly without inspector attendance. Japan Atomic Energy Agency (JAEA) has conducted the performance test for the AFAS under the contract with Nuclear Material Control Center to demonstrate this active length verification technology by using MOX fuel assemblies owned by JAEA. As the results, it was confirmed that measurement error of the active length for the MOX fuel assembly was less than 0.1% and it was satisfied with requirement by IAEA. This paper provides the performance test results for the active length verification of the AFAS.

Journal Articles

Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique

Omichi, Masaaki*; Asano, Atsushi*; Tsukuda, Satoshi*; Takano, Katsuyoshi*; Sugimoto, Masaki; Saeki, Akinori*; Sakamaki, Daisuke*; Onoda, Akira*; Hayashi, Takashi*; Seki, Shu*

Nature Communications (Internet), 5, p.3718_1 - 3718_8, 2014/04

 Times Cited Count:31 Percentile:16.97(Multidisciplinary Sciences)

Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin-avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin-biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area.

Journal Articles

Performance test results of the Advanced Verification for Inventory Sample System (AVIS), 2

Nakajima, Shinji; Nagatani, Taketeru; Asano, Takashi; Kawasue, Akane*; Iso, Shoko*; Kumakura, Shinichi*; Watanabe, Takehito*; Marlow, J. B.*; Swinhoe, M. T.*; Menlove, H. O.*; et al.

Kaku Busshitsu Kanri Gakkai (INMM) Nippon Shibu Dai-34-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2013/10

The Advanced Verification for Inventory Sample System (AVIS) is a nondestructive assay (NDA) system in order to verify the plutonium mass in the small MOX samples at Japan Nuclear Fuel Limited (JNFL) MOX fuel fabrication plant (J-MOX) under construction. The AVIS is required the high measurement performance because the AVIS will be used as a verification tool to substitute destructive analysis for a part of the samples which needs the bias defect verification. Therefore, the AVIS will fulfill an important role in the safeguards approach for J-MOX. Japan Atomic Energy Agency (JAEA) conducted the performance test of the AVIS under the contract with NMCC. As the results of these tests, we confirmed that the AVIS could almost satisfy the required performance by IAEA.

Journal Articles

Feasibility study on passive neutron technique applied to fuel debris measurement at Fukushima Daiichi Nuclear Power Plants

Nagatani, Taketeru; Nakajima, Shinji; Asano, Takashi

Proceedings of INMM 54th Annual Meeting (CD-ROM), 8 Pages, 2013/07

Fukushima Daiichi Nuclear Power Plants (1F) were struck by the earthquake and tsunami on March 11, 2011 and meltdown of the reactor cores of Units 1-3 occurred. Japan decided decommissioning of them. For decommissioning of 1F, Japan plans to recover fuel debris safely and to account nuclear material in it adequately. Survey of applicable technologies for nuclear material quantification of fuel debris, currently, is being conducted by Japan Atomic Energy Agency (JAEA) and United States Department of Energy (DOE) under the collaborative agreement. This survey will identify technologies with the most promising capability to meet IAEA safeguards needs. As one of candidate technologies of plutonium quantification in fuel debris, we, Plutonium Fuel Development Center of JAEA, consider the application of the passive neutron technique which is wildly applied to the field of material accountancy and safeguards in plutonium handing facilities. Fuel debris contains minor actinides and fission products which are intense neutron and $$gamma$$ ray emitter due to burn-up of fuel in the reactor. It also contains neutron absorber such as gadolinium included in fuel to moderate burn-up and boron added after accident to avoid re-criticality. These materials make it difficult to quantify plutonium by the current passive neutron technique. Therefore, R&D activities regarding selective counting for neutron derived from plutonium, reduction of $$gamma$$ ray influence and estimation of neutron absorber influence are required in order to overcome above difficulties. This paper provides a concept for application of passive neutron technique to fuel debris measurement.

Journal Articles

Performance test results of the advanced verification for inventory sample system (AVIS)

Nakajima, Shinji; Nagatani, Taketeru; Asano, Takashi; Marlow, J. B.*; Swinhoe, M. T.*; Menlove, H. O.*; Rael, C. D.*; Kawasue, Akane*; Iso, Shoko*; Kumakura, Shinichi*; et al.

Proceedings of INMM 54th Annual Meeting (CD-ROM), 10 Pages, 2013/07

The advanced verification inventory system (AVIS) is a nondestructive assay (NDA) system developed by Los Alamos National Laboratory (LANL) to measure small samples of bulk plutonium and uranium mixed oxide (MOX) powder and pellets at the Japan Nuclear Fuel Limited (JNFL) mixed oxide fuel fabrication plant (J-MOX). In order to mitigate the workload on the Rokkasho On-Site Laboratory (OSL), it is intended that the AVIS measurement will be substituted for a part of the Destructive Assay (DA) for J-MOX. Based on the commission from Office for Nuclear Non-Proliferation and Safeguards (JSGO) of Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Nuclear Material Control Center (NMCC), Japan Atomic Energy Agency (JAEA) has conducted the performance test of the AVIS in order to confirm the system performance before installation at the J-MOX site. The performance test consists of two phases. In the phase 1 test, detector parameters such as detector efficiency and die-away time were evaluated by using a californium-252 neutron source. These results agreed well with design value and were reported at the 53rd INMM annual meeting. JAEA conducted the phase 2 test by using MOX materials in order to evaluate the total measurement uncertainty (TMU). In the test, influence of sample density, plutonium concentration and organic additives in samples were also evaluated. Consequently, it is expected that AVIS can achieve the target TMU of 0.5% required in user requirement of IAEA by optimizing measurement condition and by using well-characterized standards. This paper provides a summary of the results of comprehensive performance test of AVIS.

83 (Records 1-20 displayed on this page)