Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

France-Japan collaboration on the SFR severe accident studies; Outcomes and future work program

Kubo, Shigenobu; Payot, F.*; Yamano, Hidemasa; Bertrand, F.*; Bachrata, A.*; Saas, L.*; Journeau, C.*; Gosse, S.*; Quaini, A.*; Shibata, Akihiro*; et al.

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 8 Pages, 2022/04

Journal Articles

Development of methodology to evaluate mechanical consequences of vapor expansion in SFR severe accident transients; Lessons learned from previous France-Japan collaboration and future objectives and milestones

Bachrata, A.*; Gentet, D.*; Bertrand, F.*; Marie, N.*; Kubota, Ryuzaburo*; Sogabe, Joji; Sasaki, Keisuke; Kamiyama, Kenji; Yamano, Hidemasa; Kubo, Shigenobu

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 9 Pages, 2022/04

In the frame of France-Japan collaboration, one of the objectives is to define and assess the calculation methodologies, and to investigate the phenomenology and the consequences of severe accident scenarios in sodium fast reactors (SFRs). A methodology whose purpose is to assess the loadings of the structures induced by a Fuel Coolant Interaction (FCI) taking place in the sodium plenum of SFR has been defined in the frame of the collaboration between France and Japan during 2014-2019. The work progress will be spread over the period 2020-2024 and the main objectives and milestones will be introduced in the paper. The objective of studies is to comprehensively address the margin between the limit of integrity of the main vessel structures and the loadings resulting from severe accidents. For this purpose, the SIMMER mechanistic calculation code simulates core disruptive accident sequences in SFRs. A fluid structure dynamics tool evaluates this interaction i.e. EUROPLEXUS is used in CEA studies and AUTODYN tool is used in JAEA studies. In the paper, a benchmark study is described in order to illustrate the evaluation of vapour expansion phase in the hot plenum. To do that, joint input data are used on the basis of an ASTRID 1500 MWth core degraded state after the power excursion which leads to vapour expansion. The most penalizing case was evidenced in this study by suppressing the action of transfer tube in-core mitigation devices in SIMMER input deck and thus privileging the upward molten core ejection. Even if the most penalizing case was evidenced in this paper, no significant RV deformation was observed in both EUROPLEXUS and AUTODYN calculation results. The assumed mechanical energy was small for the core expansion phase.

Journal Articles

Coolability evaluation of debris bed on core catcher in a sodium-cooled fast reactor

Matsuo, Eiji*; Sasa, Kyohei*; Koyama, Kazuya*; Yamano, Hidemasa; Kubo, Shigenobu; Hourcade, E.*; Bertrand, F.*; Marie, N.*; Bachrata, A.*; Dirat, J. F.*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

Discharged molten-fuel from the core during Core Disruptive Accident (CDA) could become solidified particle debris by fuel-coolant interaction in the lower sodium plenum, and then the debris could form a bed on a core catcher located at the bottom of the reactor vessel. Coolability evaluations for the debris bed are necessary for the design of the core catcher. The purpose of this study is to evaluate the coolability of the debris bed on the core catcher for the ASTRID design. For this purpose, as a first step, the coolability calculations of the debris beds formed both in short term and later phase have been performed by modeling only the debris bed itself. Thus, details of core catcher design and decay heat removal system are not described in this paper. In all the calculations, coolant temperature around the debris bed is a parameter. The calculation tool is the debris bed module implemented into a one-dimensional plant dynamics code, Super-COPD. The evaluations have shown that the debris beds formed both in short term and later phase are coolable by the design which secures sufficient coolant flow around the core catcher located in the cold pool.

3 (Records 1-3 displayed on this page)
  • 1