Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kim, G.*; Cho, S.-M.*; Im, S.*; Suh, H.*; Morooka, Satoshi; Shobu, Takahisa; Kanematsu, Manabu*; Machida, Akihiko*; Bae, S.*
Construction and Building Materials, 411, p.134529_1 - 134529_18, 2024/01
Times Cited Count:3 Percentile:54.99(Construction & Building Technology)Cho, S.*; Suh, H.*; Im, S.*; Kim, G.*; Kanematsu, Manabu*; Morooka, Satoshi; Machida, Akihiko*; Shobu, Takahisa; Bae, S.*
Construction and Building Materials, 409, p.133866_1 - 133866_20, 2023/12
Times Cited Count:6 Percentile:79.26(Construction & Building Technology)Im, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Morooka, Satoshi; Choe, H.*; Nishio, Yuhei*; Machida, Akihiko*; Kim, J.*; Lim, S.*; et al.
Construction and Building Materials, 365, p.130034_1 - 130034_18, 2023/02
Times Cited Count:11 Percentile:74.81(Construction & Building Technology)Wei, D.*; Gong, W.; Tsuru, Tomohito; Lobzenko, I.; Li, X.*; Harjo, S.; Kawasaki, Takuro; Do, H.-S.*; Bae, J. W.*; Wagner, C.*; et al.
International Journal of Plasticity, 159, p.103443_1 - 103443_18, 2022/12
Times Cited Count:67 Percentile:99.58(Engineering, Mechanical)Kim, G.*; Im, S.*; Jee, H.*; Suh, H.*; Cho, S.*; Kanematsu, Manabu*; Morooka, Satoshi; Koyama, Taku*; Nishio, Yuhei*; Machida, Akihiko*; et al.
Cement and Concrete Research, 159, p.106869_1 - 106869_17, 2022/09
Times Cited Count:22 Percentile:89.36(Construction & Building Technology)Wei, D.*; Wang, L.*; Zhang, Y.*; Gong, W.; Tsuru, Tomohito; Lobzenko, I.; Jiang, J.*; Harjo, S.; Kawasaki, Takuro; Bae, J. W.*; et al.
Acta Materialia, 225, p.117571_1 - 117571_16, 2022/02
Times Cited Count:82 Percentile:99.73(Materials Science, Multidisciplinary)Im, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Morooka, Satoshi; Koyama, Taku*; Nishio, Yuhei*; Machida, Akihiko*; Kim, J.*; Bae, S.*
Journal of the American Ceramic Society, 104(9), p.4803 - 4818, 2021/09
Times Cited Count:20 Percentile:81.34(Materials Science, Ceramics)Kitamura, Ryo; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kim, B.*; Kondo, Yasuhiro; Mibe, Tsutomu*; et al.
Physical Review Accelerators and Beams (Internet), 24(3), p.033403_1 - 033403_9, 2021/03
Times Cited Count:2 Percentile:29.07(Physics, Nuclear)A negative muonium ion (Mu) source using an aluminum foil target was developed as a low-energy muon source. An experiment to produce Mu ions was conducted to evaluate the performance of the Mu ion source. The measured event rate of Mu ions was Mu/s when the event rate of the incident muon beam was /s. The formation probability, defined as the ratio of the Mu ions to the incident muons on the Al target, was . This Mu ion source boosted the development of the muon accelerator, and the practicality of this low-energy muon source obtained using a relatively simple apparatus was demonstrated.
Kim, J. G.*; Bae, J. W.*; Park, J. M.*; Woo, W.*; Harjo, S.; Lee, S.*; Kim, H. S.*
Metals and Materials International, 27(2), p.376 - 383, 2021/02
Times Cited Count:10 Percentile:49.25(Materials Science, Multidisciplinary)Jee, H.*; Im, S.*; Kanematsu, Manabu*; Suzuki, Hiroshi; Morooka, Satoshi; Koyama, Taku*; Machida, Akihiko*; Bae, S.*
Journal of the American Ceramic Society, 103(12), p.7188 - 7201, 2020/12
Times Cited Count:18 Percentile:68.38(Materials Science, Ceramics)Bae, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Shiro, Ayumi*; Machida, Akihiko*; Watanuki, Tetsu*; Shobu, Takahisa; Morooka, Satoshi; Geng, G.*; et al.
Construction and Building Materials, 237, p.117714_1 - 117714_10, 2020/03
Times Cited Count:19 Percentile:68.81(Construction & Building Technology)Bae, J. W.*; Jung, J.*; Kim, J. G.*; Park, J. M.*; Harjo, S.; Kawasaki, Takuro; Woo, W.*; Kim, H. S.*
Materialia, 9, p.100619_1 - 100619_15, 2020/03
Nakazawa, Yuga*; Bae, S.*; Choi, H.*; Choi, S.*; Iijima, Toru*; Iinuma, Hiromi*; Kawamura, Naritoshi*; Kitamura, Ryo; Kim, B.*; Ko, H. S.*; et al.
Nuclear Instruments and Methods in Physics Research A, 937, p.164 - 167, 2019/09
Times Cited Count:2 Percentile:21.69(Instruments & Instrumentation)A muon linac is under development for the precise measurement of the muon anomalous magnetic moment (-2) and electric dipole moment (EDM) with a reaccelerated thermal muon beam. An H source driven by an ultraviolet light has been developed for the muon acceleration experiment. Prior to the acceleration experiment, a beamline commissioning was performed using this H beam, since the accelerated muon intensity is very low. We successfully measured the magnetic rigidity, which is essential for identifying the accelerated muons. This H source is capable of utilizing as a general-purpose beam source for other beamline.
Kim, J. G.*; Bae, J. W.*; Park, J. M.*; Woo, W.*; Harjo, S.; Chin, K.-G.*; Lee, S.*; Kim, H. S.*
Scientific Reports (Internet), 9, p.6829_1 - 6829_7, 2019/05
Times Cited Count:15 Percentile:52.14(Multidisciplinary Sciences)Bae, J. W.*; Kim, J. G.*; Park, J. M.*; Woo, W.*; Harjo, S.; Kim, H. S.*
Scripta Materialia, 165, p.60 - 63, 2019/05
Times Cited Count:33 Percentile:84.68(Nanoscience & Nanotechnology)Kim, B.*; Bae, S.*; Choi, H.*; Choi, S.*; Kawamura, Naritoshi*; Kitamura, Ryo*; Ko, H. S.*; Kondo, Yasuhiro; Mibe, Tsutomu*; Otani, Masashi*; et al.
Nuclear Instruments and Methods in Physics Research A, 899, p.22 - 27, 2018/08
Times Cited Count:7 Percentile:54.85(Instruments & Instrumentation)A beam profile monitor (BPM) based on a microchannel plate has been developed for muon beams with low transverse momentum for the measurement of the muon anomalous magnetic moment and electric dipole moment at high precision, with capability of diagnosing muon beams of kinetic energy range from a few keV to 4 MeV. The performance of the BPM has been evaluated using a surface muon beam at J-PARC and additionally with an ultraviolet (UV) light source. It has been confirmed that the BPM has a dynamic range from a few to 10 muons per bunch without saturation. The spatial resolution of the BPM has been estimated to be less than 0.30 mm. The positron background from muon decays is an obstacle in muon beam profile monitoring and a partial discrimination of the positrons has been achieved under discrete particle conditions.
Kitamura, Ryo*; Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Yamazaki, Takayuki*; Kondo, Yasuhiro; Hasegawa, Kazuo; et al.
Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.239 - 243, 2018/08
Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world's first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.
Kitamura, Ryo*; Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Yamazaki, Takayuki*; Kondo, Yasuhiro; Hasegawa, Kazuo; et al.
Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.1190 - 1193, 2018/06
Muon acceleration using radio-frequency accelerators makes it possible to precisely measure the muon anomalous magnetic moment and the electric dipole moment. The first muon acceleration was demonstrated using a radio-frequency quadrupole (RFQ) linac. A negative muonium ion (Mu) with less than 2 keV energy was produced from an incident muon with 3 MeV energy using a thin aluminum foil target in order to cool the muon beam for the acceleration, because the designed input energy of the RFQ is 5.6 keV. The Mu was first accelerated to 5.6 keV using an electrostatic accelerator, and was subsequently accelerated to 90 keV using the RFQ. This accelerated Mu was selected using a diagnostic beam line and was identified based on Time-Of-Flight measurements.
Bae, S.*; Choi, H.*; Choi, S.*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; et al.
Physical Review Accelerators and Beams (Internet), 21(5), p.050101_1 - 050101_6, 2018/05
Times Cited Count:16 Percentile:77.16(Physics, Nuclear)Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu), which are bound states of positive muons and two electrons, are generated from through the electron capture process in an aluminum degrader. The generated Mu's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu's are accelerated to 89 keV. The accelerated Mu's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.
Bae, S.*; Jee, H.*; Kanematsu, Manabu*; Shiro, Ayumi*; Machida, Akihiko*; Watanuki, Tetsu*; Shobu, Takahisa; Suzuki, Hiroshi
Journal of the American Ceramic Society, 101(1), p.408 - 418, 2018/01
Times Cited Count:17 Percentile:60.79(Materials Science, Ceramics)Despite enormous interest in calcium silicate hydrate (C-S-H), its detailed atomic structure and intrinsic deformation under an external load are lacking. This study demonstrates the nanostructural deformation process of C-S-H in tricalcium silicate (CS) paste as a function of applied stress by interpreting atomic pair distribution function (PDF) based on in situ X-ray scattering. Three different strains in CS paste under compression were compared using a strain gauge and the real and reciprocal space PDFs. PDF refinement revealed that the C-S-H phase mostly contributed to PDF from 0 to 20 whereas crystalline phases dominated that beyond 20. The short-range atomic strains exhibited two regions for C-S-H: I) plastic deformation (0-10 MPa) and II) linear elastic deformation (10 MPa), whereas the long-range deformation beyond 20 was similar to that of Ca(OH). Below 10 MPa, the short-range strain was caused by the densification of C-S-H induced by the removal of interlayer or gel-pore water. The strain is likely to be recovered when the removed water returns to C-S-H.