Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Small acidic protein 1 (SMAP1) mediates responses of the arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid

Rahman, A.*; Nakasone, Akari*; Chhun, T.*; Oura, Chiharu*; Biswas, K. K.*; Uchimiya, Hirofumi*; Tsurumi, Seiji*; Baskin, T. I.*; Tanaka, Atsushi; Ono, Yutaka

Plant Journal, 47(5), p.788 - 801, 2006/09

 Times Cited Count:33 Percentile:59.9(Plant Sciences)

2,4-D, a chemical analogue of IAA, is widely used as a growth regulator and exogenous source of auxin. It is believed that they share a common response pathway. Here, we show that a mutant, ${it antiauxin resistant1}$ (${it aar1}$) is resistant to 2,4-D, yet nevertheless responds like the wild type to IAA. That the ${it aar1}$ mutation alters 2,4-D responsiveness specifically was confirmed by analysis of GUS expression in the${it DR5:GUS}$ and ${it HS:AXR3NT-GUS}$ backgrounds, as well as by real-time PCR quantification of ${it IAA11}$ expression. Complementation and RNAi experiments identified a gene that confers 2,4-D responsiveness. The gene encodes a ${it small, acidic protein 1}$with unknown function and present in plants, animals, and invertebrates. These results suggest that SMAP1 is a regulatory component that mediates responses to 2,4-D and that responsiveness to 2,4-D and IAA are partially distinct.

1 (Records 1-1 displayed on this page)
  • 1