Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress on the heating and current drive systems for ITER

Jacquinot, J.*; Albajar, F.*; Beaumont, B.*; Becoulet, A.*; Bonicelli, T.*; Bora, D.*; Campbell, D.*; Chakraborty, A.*; Darbos, C.*; Decamps, H.*; et al.

Fusion Engineering and Design, 84(2-6), p.125 - 130, 2009/06

 Times Cited Count:24 Percentile:82.52(Nuclear Science & Technology)

The electron cyclotron (EC), ion cyclotron (IC), neutral beam (NB) and, lower hybrid (LH) systems for ITER have been reviewed in 2007/2008 in light of progress of physics and technology. Although the overall specifications are unchanged, notable changes have been approved. Firstly, the full 73MW should be commissioned and available on a routine basis before the D/T phase. Secondly, the possibility to operate the NB at full power during the hydrogen phase requiring new shine through protection; IC with 2 antennas with increased robustness; 2 MW transmission systems to provide an easier upgrading of the EC power; the addition of a building dedicated to the RF power sources and to a testing facility for acceptance of diagnostics and heating port plugs. Thirdly, the need of a plan for developing, in time for the active phase, a CD system such as LH suitable for very long pulse operation of ITER was recognized.

Journal Articles

Development of cold isostatic pressing graphite module for a heat-resistant lower hybrid current drive antenna

Maebara, Sunao; Goniche, M.*; Kazarian, F.*; Seki, Masami; Ikeda, Yoshitaka; Imai, Tsuyoshi*; Beaumont, B.*

Review of Scientific Instruments, 76(5), p.053501_1 - 053501_7, 2005/05

 Times Cited Count:1 Percentile:10.18(Instruments & Instrumentation)

Development of a plasma facing module using Cold Isostatic Pressing Graphite (CIPG) had been done for a heat-resistant LHCD antenna. A thin stainless film (10$$mu$$m), molybdenum film (10$$mu$$m) and copper film (50$$mu$$m) are laid to overlap each other on the CIPG materials, the CIPG surfaces were successfully coated with copper layer by diffusion bonding method. This module has four waveguides and a water cooling channel, the length is 206 mm. High power long pulse operation was successfully achieved up to 250 kW (125 MW/m$$^{2}$$)/700s. The module has been successfully tested at a RF power density which is equivalent, in terms of RF electric field (5kV/cm), to the one proposed for the LHCD antenna of ITER-FEAT. The outgassing rate of the copper-coated CIPG is estimated to be 3.2-5.1$$times$$10$$^{-6}$$ Pa.m$$^{3}$$/s.m$$^{2}$$ at 100$$^{circ}$$C, it is assessed that a pumping system is not required to evacuate the pressure in the LHCD antenna.

2 (Records 1-2 displayed on this page)
  • 1