Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

First ionization potentials of Fm, Md, No, and Lr; Verification of filling-up of 5f electrons and confirmation of the actinide series

Sato, Tetsuya; Asai, Masato; Borschevsky, A.*; Beerwerth, R.*; Kaneya, Yusuke*; Makii, Hiroyuki; Mitsukai, Akina*; Nagame, Yuichiro; Osa, Akihiko; Toyoshima, Atsushi; et al.

Journal of the American Chemical Society, 140(44), p.14609 - 14613, 2018/11

 Times Cited Count:16 Percentile:70.21(Chemistry, Multidisciplinary)

The first ionization potential (IP$$_1$$) yields information on valence electronic structure of an atom. IP$$_1$$ values of heavy actinides beyond einsteinium (Es, Z = 99), however, have not been determined experimentally so far due to the difficulty in obtaining these elements on scales of more than one atom at a time. Recently, we successfully measured IP$$_1$$ of lawrencium (Lr, Z = 103) using a surface ionization method. The result suggests that Lr has a loosely-bound electron in the outermost orbital. In contrast to Lr, nobelium (No, Z = 102) is expected to have the highest IP$$_1$$ among the actinide elements owing to its full-filled 5f and the 7s orbitals. In the present study, we have successfully determined IP$$_1$$ values of No as well as fermium (Fm, Z = 100) and mendelevium (Md, Z = 101) using the surface ionization method. The obtained results indicate that the IP$$_1$$ value of heavy actinoids would increase monotonically with filling electrons up in the 5f orbital like heavy lanthanoids.

1 (Records 1-1 displayed on this page)
  • 1