Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Periez, R.*; Bezhenar, R.*; Brovchenko, I.*; Jung, K. T.*; Kamidaira, Yuki; Kim, K. O.*; Kobayashi, Takuya; Liptak, L.*; Maderich, V.*; Min, B. I.*; et al.
Journal of Environmental Radioactivity, 198, p.50 - 63, 2019/03
Times Cited Count:18 Percentile:69.57(Environmental Sciences)A number of marine radionuclide dispersion models were applied to simulate Cs releases from Fukushima Daiichi Nuclear Power Plant accident in 2011 over the northwest Pacific. Simulations extended over two years and both direct releases into the ocean and deposition of atmospheric releases on the ocean surface were considered. Dispersion models included an embedded biological uptake model (BUM). Three types of BUMs were used: equilibrium, dynamic and allometric. Model results were compared with
Cs measurements in water, sediment and biota. A reasonable agreement in model/model and model/data comparisons was obtained.
Periez, R.*; Bezhenar, R.*; Brovchenko, I.*; Duffa, C.*; Iosjpe, M.*; Jung, K. T.*; Kobayashi, Takuya; Lamego, F.*; Maderich, V.*; Min, B. I.*; et al.
Science of the Total Environment, 569-570, p.594 - 602, 2016/11
Times Cited Count:24 Percentile:65.37(Environmental Sciences)State-of-the art dispersion models were applied to simulate Cs dispersion from Chernobyl Nuclear Power Plant disaster fallout in the Baltic Sea and from Fukushima Daiichi Nuclear Plant releases in the Pacific Ocean after the 2011 tsunami. Models were of different nature, from box to full three-dimensional models, and included water/sediment interactions. Agreement between models was very good in the Baltic. In the case of Fukushima, results from models could be considered to be in acceptable agreement only after a model harmonization process consisting of using exactly the same forcing (water circulation and parameters) in all models. It was found that the dynamics of the considered system (magnitude and variability of currents) was essential in obtaining a good agreement between models. The difficulties in developing operative models for decision-making support in these dynamic environments were highlighted.
Periez, R.*; Bezhenar, R.*; Brovchenko, I.*; Duffa, C.*; Iosjpe, M.*; Jung, K.-T.*; Kobayashi, Takuya; Lamego, F.*; Maderich, V.*; Min, B.-I.*; et al.
no journal, ,
State-of-the art dispersion models were applied to simulate Cs dispersion from Chernobyl nuclear power plant disaster fallout in the Baltic Sea and from Fukushima Daiichi Nuclear Plant releases in the Pacific Ocean after the 2011 tsunami. Models were of different nature, from box to full three-dimensional models, and included water/sediment interactions. Agreement between models and between models and experimental data (from HELCOM database) was very good in the Baltic. In the case of Fukushima, results from models could be considered to be in acceptable agreement only after a model harmonization process consisting of using exactly the same forcing (water circulation and parameters) in all models. It was found that the dynamics of the considered system (magnitude and variability of currents) was essential in obtaining a good agreement between models. The difficulties in developing operative models for decision-making support in these dynamic environments were highlighted.