Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsunaga, Go; Okabayashi, Michio*; Aiba, Nobuyuki; Boedo, J. A.*; Ferron, J. R.*; Hanson, J. M.*; Hao, G. Z.*; Heidbrink, W. W.*; Holcomb, C. T.*; In, Y.*; et al.
Nuclear Fusion, 53(12), p.123022_1 - 123022_13, 2013/12
Times Cited Count:5 Percentile:23.18(Physics, Fluids & Plasmas)Matsunaga, Go; Okabayashi, Michio*; Aiba, Nobuyuki; Boedo, J. A.*; Ferron, J. R.*; Hanson, J. M.*; Hao, G. Z.*; Heidbrink, W. W.*; Holcomb, C. T.*; In, Y.*; et al.
Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03
Schaffer, M. J.*; Snipes, J. A.*; Gohil, P.*; de Vries, P.*; Evans, T. E.*; Fenstermacher, M. E.*; Gao, X.*; Garofalo, A. M.*; Gates, D. A.*; Greenfield, C. M.*; et al.
Nuclear Fusion, 51(10), p.103028_1 - 103028_11, 2011/10
Times Cited Count:33 Percentile:80.34(Physics, Fluids & Plasmas)Experiments at DIII-D investigated the effects of ferromagnetic error fields similar to those expected from proposed ITER Test Blanket Modules (TBMs). Studied were effects on: plasma rotation and locking; confinement; L-H transition; edge localized mode (ELM) suppression by resonant magnetic perturbations; ELMs and the H-mode pedestal; energetic particle losses; and more. The experiments used a 3-coil mock-up of 2 magnetized ITER TBMs in one ITER equatorial port. The experiments did not reveal any effect likely to preclude ITER operations with a TBM-like error field. The largest effect was slowed plasma toroidal rotation v across the entire radial profile by as much as via non-resonant braking. Changes to global
,
and
were
3 times smaller. These effects are stronger at higher
and lower
. Other effects were smaller.
Kirk, A.*; Asakura, Nobuyuki; Boedo, J. A.*; Beurskens, M.*; Counsell, G. F.*; Eich, T.*; Fundamenski, W.*; Herrmann, A.*; Kamada, Yutaka; Leonard, A. W.*; et al.
Journal of Physics; Conference Series, 123, p.012011_1 - 012011_10, 2008/00
Times Cited Count:22 Percentile:97.56A comparison of the spatial and temporal evolution of the filamentary structures observed during type I ELMs is presented from a variety of diagnostics and machines. There is evidence that these filaments can be detected inside the LCFS prior to ELMs. The filaments do not have a circular cross section instead they are elongated in the perpendicular (poloidal) direction and this size appears to increase linearly with the minor radius of the machine. The filaments start rotating toroidally/poloidally with velocities close to that of the pedestal. This velocity then decreases as the filaments propagate radially. It is most likely that the filaments have at least their initial radial velocity when they are far out into the SOL. The dominant loss mechanism is through parallel transport and the transport to the wall is through the radial propagation of these filaments. Measurements of the filament energy content show that each filament contains up to 2.5 % of the energy released by the ELM.
Kamiya, Kensaku; Asakura, Nobuyuki; Boedo, J. A.*; Eich, T.*; Federici, G.*; Fenstermacher, M.*; Finken, K.*; Herrmann, A.*; Terry, J.*; Kirk, A.*; et al.
Plasma Physics and Controlled Fusion, 49(7), p.s43 - s62, 2007/07
Times Cited Count:73 Percentile:91.95(Physics, Fluids & Plasmas)Edge Localized Mode (ELM) measurements in the tokamaks, including JT-60U, DIII-D, ASDEX-U and JET, are reviewed. The followings are outlines of this presentation. (1) ELM Types and basic scaling, (2) Small ELM regimes and ELM mitigation, (3) ELM filament formation and transverse motion, (4) Power deposition on divertor targets and main chamber wall.
Leonard, A. W.*; Asakura, Nobuyuki; Boedo, J. A.*; Becoulet, M.*; Counsell, G. F.*; Eich, T.*; Fundamenski, W.*; Herrmann, A.*; Horton, L. D.*; Kamada, Yutaka; et al.
Plasma Physics and Controlled Fusion, 48(5A), p.A149 - A162, 2006/05
Times Cited Count:40 Percentile:78.94(Physics, Fluids & Plasmas)This report summarizes Type I edge localized mode (ELM) dynamics measurements from a number of tokamaks. Several transport mechanisms are conjectured to be responsible for ELM transport, including convective transport due to filamentary structures ejected from the pedestal, parallel transport due to edge ergodization or magnetic reconnection and turbulent transport driven by the high edge gradients when the radial electric field shear is suppressed. The experimental observations are assessed for their validation, or conflict, with these ELM transport conjectures.
Snipes, J. A.*; Schaffer, M. J.*; Gohil, P.*; de Vries, P.*; Fenstermacher, M. E.*; Evans, T. E.*; Gao, X. M.*; Garofalo, A.*; Gates, D. A.*; Greenfield, C. M.*; et al.
no journal, ,
A series of experiments was performed on DIII-D to mock-up the field that will be induced in a pair of ferromagnetic Test Blanket Modules (TBMs) in ITER to determine the effects of such error fields on plasma operation and performance. A set of coils producing both poloidal and toroidal fields was placed inside a re-entrant horizontal port close to the plasma. The coils produce a localized ripple due to the toroidal field (TF) + TBM up to 5.7%, which is more than four times that expected from a pair of representative 1.3 ton TBMs in ITER. The experiments show that the reduction in the toroidal rotation is sensitive to the ripple. On the other hand, the confinement is reduced by up to 15-18% for local ripple 3% but is hardly affected at 1.7% local ripple.
Matsunaga, Go; Okabayashi, Michio*; Aiba, Nobuyuki; Boedo, J. A.*; Ferron, J. R.*; Hanson, J. M.*; Hao, G. Z.*; Heidbrink, W. W.*; Holcomb, C. T.*; In, Y.*; et al.
no journal, ,
no abstracts in English