Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Jolliet, S.; McMillan, B. F.*; Villard, L.*; Vernay, T.*; Angelino, P.*; Tran, T. M.*; Brunner, S.*; Bottino, A.*; Idomura, Yasuhiro
Journal of Computational Physics, 231(3), p.745 - 758, 2012/02
Times Cited Count:14 Percentile:61.76(Computer Science, Interdisciplinary Applications)Labit, B.*; Pochelon, A.*; Rancic, M.*; Piras, F.*; Bencze, A.*; Bottino, A.*; Brunner, S.*; Camenen, Y.*; Chattopadhyay, P. K.*; Coda, S.*; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
Villard, L.*; Bottino, A.*; Brunner, S.*; Casati, A.*; Chowdhury, J.*; Dannert, T.*; Ganesh, R.*; Garbet, X.*; Grler, T.*; Grandgirard, V.*; et al.
Plasma Physics and Controlled Fusion, 52(12), p.124038_1 - 124038_18, 2010/11
Times Cited Count:21 Percentile:60.74(Physics, Fluids & Plasmas)McMillan, B. F.*; Lapillonne, X.*; Brunner, S.*; Villard, L.*; Jolliet, S.; Bottino, A.*; Grler, T.*; Jenko, F.*
Physical Review Letters, 105(15), p.155001_1 - 155001_4, 2010/10
Times Cited Count:108 Percentile:93.64(Physics, Multidisciplinary)Bottino, A.*; Scott, B. D.*; Brunner, S.*; McMillan, B. F.*; Tran, T. M.*; Vernay, T.*; Villard, L.*; Jolliet, S.; Hatzky, R.*; Peeters, A. G.*
IEEE Transactions on Plasma Science, 38(9), p.2129 - 2135, 2010/09
Times Cited Count:26 Percentile:67.96(Physics, Fluids & Plasmas)Jolliet, S.*; Bottino, A.*; Angelino, P.*; Hatzky, R.*; Tran, T. M.*; McMillan, B. F.*; Sauter, O.*; Appert, K.*; Idomura, Yasuhiro; Villard, L.*
Computer Physics Communications, 177(5), p.409 - 425, 2007/09
Times Cited Count:192 Percentile:98.52(Computer Science, Interdisciplinary Applications)A global plasma turbulence simulation code, ORB5, is presented. A particular feature is the use of straight-field-line magnetic coordinates and a field-aligned Fourier filtering technique that dramatically improves the performance of the code in terms of both the numerical noise reduction and the maximum time step allowed. Another feature is the capability to treat arbitrary axisymmetric ideal MHD equilibrium configurations. The code is validated against an analytical theory of zonal flows and against other codes for a selection of linear and nonlinear tests.
Villard, L.*; Angelino, P.*; Bottino, A.*; Allfrey, S. J.*; Hatzky, R.*; Idomura, Yasuhiro; Sauter, O.*; Tran, T. M.*
Plasma Physics and Controlled Fusion, 46(12B), p.B51 - B62, 2004/12
Times Cited Count:29 Percentile:66.24(Physics, Fluids & Plasmas)This paper reviews the present status of recent first principles based plasma turbulence simulations, and gives quantitative discussions on influences of the v// nonlinearlity and the geometry effects in the gyrokinetic Poisson equaiton, which are ignored in the conventional approximations, on simulations results. Careful treatments of these effects enable turbulence simulations satisfying the conservation of the energy and the particle number. The new simulation disclosed new phenomena, and it is found that (1) turbulence spreading is induced by avalanche like phnemena consisting of bursty heat transport and local flattening of pressure profiles, and (2) nonlinearly driven EB flows become global shear flows with scale lengths of about 30 ion gyro radii.
Jolliet, S.*; Angelino, P.*; Bottino, A.*; Idomura, Yasuhiro; Villard, L.*
Theory of Fusion Plasmas, ISPP21, p.345 - 351, 2004/00
Global particle-in-cell (PIC) simulations are a very useful tool for studying the time evolution of turbulence induced by ion-temperature-gradient (ITG) instabilities. Unfortunately, the linear code LORB5 and its non-linear version ORB5 require high computational power. In order to study more sophisticated models, we need to optimize these codes. We will focus on LORB5, which uses a cylindrical grid (r,z) for solving the Vlasov equation and a (s,) grid for the Poisson equation. The approach presented in this work consists of implementing the gyrokinetic model using a single (s,
) grid. Here
is the straight-field-line poloidal coordinate. A method to avoid the singularity at the magnetic axis is presented, and a benchmark with the CYCLONE case is shown.
Bottino, A.*; Angelino, P.*; Allfrey, S. J.*; Brunner, S.*; Hatzky, R.*; Idomura, Yasuhiro; Jolliet, S.*; Sauter, O.*; Tran, T. M.*; Villard, L.*
Theory of Fusion Plasmas, ISPP21, p.75 - 86, 2004/00
The global nonlinear electrostatic PIC code ORB5 solves the gyrokinetic Vlasov-Poisson system assuming adiabatic electrons in realistic tokamak magnetohydrodynamic (MHD) equilibria. The present version of ORB5 shows remarkable particle and energy conservation properties and can be used for physics studies in toroidal geometry. In particular, the optimized tracer loading method has been adapted to tokamak geometry and implemented in ORB5 together with a new adaptive gyro-average algorithm. Basic physical conservation properties (energy and particle number) are used as indicators of the quality of the numerical simulations. In this paper we present the first nonlinear results of electrostatic collisionless microinstabilities of realistic MHD shaped equilibria, provided by the MHD equilibrium code CHEASE, including the toroidicity induced geometrical coupling of the zonal ExB flow and the parallel velocity nonlinearlity.
Jolliet, S.*; Villard, L.*; Idomura, Yasuhiro; McMillan, B. F.*; Bottino, A.*; Lapillonne, X.*
no journal, ,
no abstracts in English
Jolliet, S.; McMillan, B. F.*; Bottino, A.*; Angelino, P.*; Lapillonne, X.*; Vernay, T.*; Idomura, Yasuhiro; Villard, L.*
no journal, ,
McMillan, B. F.*; Jolliet, S.; Tran, T. M.*; Bottino, A.*; Lapillonne, X.*; Villard, L.*
no journal, ,