Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Huang, Z.*; Wang, W.*; Ye, H.*; Bao, S.*; Shangguan, Y.*; Liao, J.*; Cao, S.*; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; Deng, G.*; et al.
Physical Review B, 109(1), p.014434_1 - 014434_9, 2024/01
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:2 Percentile:37.82(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in HoFe on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Lei, A. L.*; Cao, L. H.*; Yang, X. Q.*; Tanaka, Kazuo*; Kodama, Ryosuke*; He, X. T.*; Mima, Kunioki*; Nakamura, Tatsufumi; Norimatsu, Takayoshi*; Yu, W.*; et al.
Physics of Plasmas, 16(2), p.020702_1 - 020702_4, 2009/02
Times Cited Count:12 Percentile:41.88(Physics, Fluids & Plasmas)The fast electron propagation in an inverse cone target is investigated computationally and experimentally. Two-dimensional particle-in-cell simulation shows that fast electrons with substantial numbers are generated at the outer tip of an inverse cone target irradiated by a short intense laser pulse. These electrons are guided and confined to propagate along the inverse cone wall, forming a large surface current. The experiment qualitatively verifies the guiding and confinement of the strong electron current in the wall surface. The large surface current and induced strong field s are of importance for fast ignition related research.