Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Novello, L.*; Cara, P.*; Coletti, A.*; Gaio, E.*; Maistrello, A.*; Matsukawa, Makoto; Philipps, G.*; Tomarchio, V.*; Yamauchi, Kunihito
IEEE Transactions on Applied Superconductivity, 26(2), p.4700507_1 - 4700507_7, 2016/03
Times Cited Count:8 Percentile:41.42(Engineering, Electrical & Electronic)Okumura, Yoshikazu; Gobin, R.*; Knaster, J.*; Heidinger, R.*; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; et al.
Review of Scientific Instruments, 87(2), p.02A739_1 - 02A739_3, 2016/02
Times Cited Count:8 Percentile:37.01(Instruments & Instrumentation)IFMIF is an accelerator based neutron facility having two set of linear accelerators each producing 125mA/CW deuterium ion beams (250mA in total) at 40MeV. The LIPAc (Linear IFMIF Prototype Accelerator) being developed in the IFMIF-EVEDA project consists of an injector, a RFQ accelerator, and a part of superconducting Linac, whose target is to demonstrate 125mA/CW deuterium ion beam acceleration up to 9MeV. The injector has been developed in CEA Saclay and already demonstrated 140mA/100keV deuterium beam. The injector was disassembled and delivered to the International Fusion Energy Research Center (IFERC) in Rokkasho, Japan, and the commissioning has started after its reassembly 2014; the first beam production has been achieved in November 2014. Up to now, 100keV/120mA/CW hydrogen ion beam has been produced with a low beam emittance of 0.2 .mm.mrad (rms, normalized).
Okumura, Yoshikazu; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; Gobin, R.*; Harrault, F.*; Heidinger, R.*; et al.
Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.203 - 205, 2015/09
Under the framework of Broader Approach (BA) agreement between Japan and Euratom, IFMIF/EVEDA project was launched in 2007 to validate the key technologies to realize IFMIF. The most crucial technology to realize IFMIF is two set of linear accelerator each producing 125mA/CW deuterium ion beams up to 40MeV. The prototype accelerator, whose target is 125mA/CW deuterium ion beam acceleration up to 9MeV, is being developed in International Fusion Research Energy Center (IFERC) in Rokkasho, Japan. The injector developed in CEA Saclay was delivered in Rokkasho in 2014, and is under commissioning. Up to now, 100keV/120mA/CW hydrogen ion beams and 100keV/90mA/CW duty deuterium ion beams are successfully produced with a low beam emittance of 0.21 .mm.mrad (rms, normalized). Delivery of RFQ components will start in 2015, followed by the installation of RF power supplies in 2015.
Knaster, J.*; Arbeiter, F.*; Cara, P.*; Favuzza, P.*; Furukawa, Tomohiro; Groeschel, F.*; Heidinger, R.*; Ibarra, A.*; Matsumoto, Hiroshi*; Mosnier, A.*; et al.
Nuclear Fusion, 53(11), p.116001_1 - 116001_18, 2013/11
Times Cited Count:65 Percentile:93.72(Physics, Fluids & Plasmas)The IFMIF/EVEDA project under the Broader Approach Agreement between Japan and EU aims at allowing a rapid construction phase of IFMIF in due time. The three main facilities, (1) the Accelerator Facility, (2) the Target Facility and (3) the Test Facility, are the subject of validation activities that include the construction of either full scale prototypes or smartly devised scaled down facilities that will allow a straightforward extrapolation to IFMIF needs. The installation of a Linac of 1.125 MW (125 mA and 9 MeV) of deuterons started in March 2013 in Rokkasho. The world largest liquid Li test loop is running in Oarai with an ambitious experimental programme for the years ahead. A full scale high flux test module that will house 1000 small specimens developed jointly in Europe and Japan has been constructed in Germany together with its He gas loop. A full scale medium flux test module to carry out on-line creep measurement has been constructed in Switzerland.
Shimada, Katsuhiro; Baulaigue, O.*; Cara, P.*; Coletti, A.*; Coletti, R.*; Matsukawa, Makoto; Terakado, Tsunehisa; Yamauchi, Kunihito
Fusion Engineering and Design, 86(6-8), p.1427 - 1431, 2011/10
Times Cited Count:11 Percentile:62.35(Nuclear Science & Technology)Coletti, A.*; Baulaigue, O.*; Cara, P.*; Coletti, R.*; Ferro, A.*; Gaio, E.*; Matsukawa, Makoto; Novello, L.*; Santinelli, M.*; Shimada, Katsuhiro; et al.
Fusion Engineering and Design, 86(6-8), p.1373 - 1376, 2011/10
Times Cited Count:23 Percentile:82.57(Nuclear Science & Technology)Matsukawa, Makoto; Terakado, Tsunehisa; Yamauchi, Kunihito; Shimada, Katsuhiro; Cara, P.*; Gaio, E.*; Novello, L.*; Ferro, A.*; Coletti, R.*; Santinelli, M.*; et al.
Journal of Plasma and Fusion Research SERIES, Vol.9, p.264 - 269, 2010/08
Yamauchi, Kunihito; Shimada, Katsuhiro; Terakado, Tsunehisa; Matsukawa, Makoto; Cara, P.*; Gaio, E.*; Santinelli, M.*; Coletti, R.*; Coletti, A.*
Journal of Plasma and Fusion Research SERIES, Vol.9, p.220 - 225, 2010/08
Shimada, Katsuhiro; Terakado, Tsunehisa; Matsukawa, Makoto; Cara, P.*; Baulaigue, O.*; Gaio, E.*; Coletti, R.*; Candela, G.*; Coletti, A.*
Journal of Plasma and Fusion Research SERIES, Vol.9, p.163 - 168, 2010/08
Matsukawa, Makoto; Kikuchi, Mitsuru; Fujii, Tsuneyuki; Fujita, Takaaki; Hayashi, Takao; Higashijima, Satoru; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Ide, Shunsuke; Ishida, Shinichi; et al.
Fusion Engineering and Design, 83(7-9), p.795 - 803, 2008/12
Times Cited Count:17 Percentile:71.61(Nuclear Science & Technology)no abstracts in English
Kasugai, Atsushi; Bazin, N.*; Cara, P.*; Chel, S.*; Gex, D.*; Heidinger, R.*; Yoshida, Kiyoshi; Ihara, Akira; Knaster, J.*; Kondo, Keitaro; et al.
no journal, ,
The International Fusion Materials Irradiation Facility (IFMIF) aims to provide an accelerator-based, D-Li neutron source to produce high energy neutrons at sufficient intensity and irradiation volume for DEMO reactor materials qualification. The IFMIF/EVEDA project, which is part of the Broader Approach (BA) agreement between Japan and EU, has the mission to work on the engineering design of IFMIF and to validate the main technological challenges. The prototype accelerator being developed in the IFMIF-EVEDA project consists of an injector, a RFQ accelerator, and a part of superconducting Linac. The design of the cryoplant for SRF-linac has been already completed and it will be started to install to the facility from coming September after the licensing. This article describes the cryoplant for the IFMIF/EVEDA prototype accelerator facility.
Sugimoto, Masayoshi; Knaster, J.*; Arbeiter, F.*; Cara, P.*; Favuzza, P.*; Furukawa, Tomohiro; Gioacchino, M.*; Groeschel, F.*; Heidinger, R.*; Ibarra, A.*; et al.
no journal, ,
Under the framework of the Broader Approach agreement between Japan and EURATOM the concept of the International Fusion Materials Irradiation Facility (IFMIF) to provide the intense neutron irradiation test facility for developing the fusion reactor materials has been evolved since 2007, through the activities to prepare the engineering design documents for IFMIF with the associated R&D of prototypical components, named as IFMIF Engineering Validation and Engineering Design Activities (EVEDA) project. Recently the Intermediate IFMIF Engineering Design Report for IFMIF (IIEDR) was delivered in July 2013, which is supported by the major outcomes of the validation activities of the prototypical components: Linear IFMIF Prototype Accelerator, EVEDA Lithium Test Loop, High Flux Test Module capsule, etc. In this article, the progresses of the IIEDR and validation tests and also the outcomes to be achieved till mid 2017, the completion time of IFMIF/EVEDA, will be comprehensively overviewed.