Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zheng, X.-G.*; Yamauchi, Ichihiro*; Hagihara, Masato; Nishibori, Eiji*; Kawae, Tatsuya*; Watanabe, Isao*; Uchiyama, Tomoki*; Chen, Y.*; Xu, C.-N.*
Nature Communications (Internet), 15, p.9989_1 - 9989_12, 2024/11
Times Cited Count:0Chen, H. F.*; Liu, B. X.*; Xu, P. G.; Fang, W.*; Tong, H. C.*; Yin, F. X.*
Journal of Materials Research and Technology, 32, p.3060 - 3069, 2024/09
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Shi, L.-D.*; West-Roberts, J.*; Schoelmerich, M. C.*; Penev, P. I.*; Chen, L.-X.*; Amano, Yuki; Lei, S.*; Sachdeva, R.*; Banfield, J. F.*
Nature Microbiology (Internet), 9(9), p.2422 - 2433, 2024/09
Times Cited Count:0 Percentile:0.00(Microbiology)Hu, F. F.*; Qin, T. Y.*; Ao, N.*; Su, Y. H.; Zhou, L.*; Xu, P. G.; Parker, J. D.*; Shinohara, Takenao; Chen, J.*; Wu, S. C.*
Engineering Fracture Mechanics, 306, p.110267_1 - 110267_18, 2024/08
Times Cited Count:0 Percentile:0.00(Mechanics)Nguyen, B. V. C.*; Murakami, Kenta*; Chena, L.*; Phongsakorn, P. T.*; Chen, X.*; Hashimoto, Takashi; Hwang, T.*; Furusawa, Akinori; Suzuki, Tatsuya*
Nuclear Materials and Energy (Internet), 39, p.101639_1 - 101639_9, 2024/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Linh, B. D.*; Corsi, A.*; Gillibert, A.*; Obertelli, A.*; Doornenbal, P.*; Barbieri, C.*; Duguet, T.*; Gmez-Ramos, M.*; Holt, J. D.*; Hu, B. S.*; et al.
Physical Review C, 109(3), p.034312_1 - 034312_15, 2024/03
Times Cited Count:1 Percentile:74.53(Physics, Nuclear)no abstracts in English
Rhm, W.*; Ban, Nobuhiko*; Chen, J.*; Li, C.*; Dobynde, M.*; Durante, M.*; El-Jaby, S.*; Komiyama, Tatsuto*; Ozasa, Kotaro*; Sato, Tatsuhiko; et al.
Journal of Medical Physics - Zeitschrift fr medizinische Physik -, 34(1), p.4 - 13, 2024/02
Times Cited Count:0 Percentile:0.00(Radiology, Nuclear Medicine & Medical Imaging)The International Commission on Radiological Protection (ICRP) provides independent recommendations on radiological protection for the public benefit. For more than 90 years, the ICRP System of Radiological Protection has been guiding the development and implementation of national and international standards and regulations on radiological protection. In 2019, ICRP established Task Group (TG) 115 to address a broader range of topics related to dose and risk assessment for radiological protection of astronauts. This paper gives an overview of the System of Radiological Protection and a brief summary of ICRP's work on radiological protection of astronauts.
Shavers, M. R.*; Semones, E. J.*; Shurshakov, V.*; Dobynde, M.*; Sato, Tatsuhiko; Komiyama, Tatsuto*; Tomi, L.*; Chen, J.*; El-Jaby, S.*; Straube, U.*; et al.
Journal of Medical Physics - Zeitschrift fr medizinische Physik -, 34(1), p.31 - 43, 2024/02
Times Cited Count:1 Percentile:0.00(Radiology, Nuclear Medicine & Medical Imaging)The Partner Agencies of the International Space Station (ISS) present an intracomparison of the ionizing radiation absorbed dose and risk quantities used to characterize example mission lunar space. The results and the work itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report
Tsuru, Tomohito; Han, S.*; Matsuura, Shutaro*; Chen, Z.*; Kishida, Kyosuke; Lobzenko, I.; Rao, S.*; Woodward, C.*; George, E.*; Inui, Haruyuki*
Nature Communications (Internet), 15, p.1706_1 - 1706_10, 2024/02
Times Cited Count:11 Percentile:98.40(Multidisciplinary Sciences)Refractory high-entropy alloys (RHEAs) have attracted attention because of their potential for use in ultrahigh-temperature applications. Unfortunately, their body-centered-cubic (BCC) crystal structures make them more brittle than the ductile and fracture-resistant face-centered-cubic (FCC) HEAs. RHEAs also display significantly lower creep strengths than a leading Ni-base superalloy and its FCC matrix. To overcome these drawbacks and develop RHEAs into viable structural materials, improved fundamental understanding is needed of factors that control strength and ductility. Here we investigate two model RHEAs, TiZrHfNbTa and VNbMoTaW, and show that the former is plastically compressible down to 77 K, whereas the latter is not below 298 K. We find that hexagonal close-packed (HCP) elements in TiZrHfNbTa lower its dislocation core energy, increase its lattice distortion, and lower its shear modulus relative to VNbMoTaW whose elements are all BCC, leading to the formers higher ductility and modulus-normalized yield strength. Consistent with our yield strength models, primarily screw dislocations are present in TiZrHfNbTa after deformation, but equal numbers of edge and screw segments in VNbTaMoW. Dislocation cores are compact in VNbTaMoW and extended in TiZrHfNbTa, and different macroscopic slip planes are activated in the two RHEAs, which we attribute to the concentration of HCP elements. Our findings demonstrate how electronic structure changes related to the ratio of HCP to BCC elements can be used to control strength, ductility, and slip behavior to develop the next generation of high-temperature materials for more efficient power plants and transportation.
Zhang, A.*; Deng, K.*; Sheng, J.*; Liu, P.*; Kumar, S.*; Shimada, Kenya*; Jiang, Z.*; Liu, Z.*; Shen, D.*; Li, J.*; et al.
Chinese Physics Letters, 40(12), p.126101_1 - 126101_8, 2023/12
Times Cited Count:7 Percentile:81.71(Physics, Multidisciplinary)Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Times Cited Count:6 Percentile:88.80(Astronomy & Astrophysics)Gamma decays were observed in Ca and Ca following quasi-free one-proton knockout reactions from Sc. For Ca, a ray transition was measured to be 1456(12) keV, while for Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the and orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic Ca and potentially drives the dripline of Ca isotopes to Ca or even beyond.
Jiang, X.*; Hattori, Takanori; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; Yano, Shinichiro*; Chen, J.*; He, L.*; et al.
Materials Horizons, 10(3), p.977 - 982, 2023/03
Times Cited Count:19 Percentile:93.10(Chemistry, Multidisciplinary)As a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting world wide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase.
Chen, J.*; Yamamoto, Kei; Zhang, J.*; Ma, J.*; Wang, H.*; Sun, Y.*; Chen, M.*; Ma, J.*; Liu, S.*; Gao, P.*; et al.
Physical Review Applied (Internet), 19(2), p.024046_1 - 024046_9, 2023/02
Times Cited Count:6 Percentile:76.16(Physics, Applied)Elekes, Z.*; Juhsz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12
Times Cited Count:2 Percentile:37.57(Physics, Nuclear)The low-lying level structure of V and V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for V while the neutron knock-out reaction provided the data for V. Four and five new transitions were determined for V and V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2 and 9/2 levels. The (,) excitation cross sections for V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation, V could not be unambiguously placed on the island of inversion.
Enciu, M.*; Liu, H. N.*; Obertelli, A.*; Doornenbal, P.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review Letters, 129(26), p.262501_1 - 262501_7, 2022/12
Times Cited Count:13 Percentile:82.53(Physics, Multidisciplinary)The one-neutron knockout from Ca was performed at 230 MeV/nucleon combined with prompt spectroscopy. The momentum distributions corresponding to the removal of and neutrons were measured. The cross sections are consistent with a shell closure at the neutron number , found as strong as at and in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron and orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.
Chen, L.*; Mao, C.*; Chung, J.-H.*; Stone, M. B.*; Kolesnikov, A. I.*; Wang, X.*; Murai, Naoki; Gao, B.*; Delaire, O.*; Dai, P.*
Nature Communications (Internet), 13, p.4037_1 - 4037_7, 2022/07
Times Cited Count:16 Percentile:78.21(Multidisciplinary Sciences)Suzuki, Hakuto*; Zhao, G.*; Okamoto, Jun*; Sakamoto, Shoya*; Chen, Z.-Y.*; Nonaka, Yosuke*; Shibata, Goro; Zhao, K.*; Chen, B.*; Wu, W.-B.*; et al.
Journal of the Physical Society of Japan, 91(6), p.064710_1 - 064710_5, 2022/06
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Koiwai, Takuma*; Wimmer, K.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Duguet, T.*; Holt, J. D.*; Miyagi, Takayuki*; Navrtil, P.*; Ogata, Kazuyuki*; et al.
Physics Letters B, 827, p.136953_1 - 136953_7, 2022/04
Times Cited Count:5 Percentile:68.39(Astronomy & Astrophysics)no abstracts in English
Zhang, J.*; Chen, M.*; Chen, J.*; Yamamoto, Kei; Wang, H.*; Hamdi, M.*; Sun, Y.*; Wagner, K.*; He, W.*; Zhang, Y.*; et al.
Nature Communications (Internet), 12, p.7258_1 - 7258_8, 2021/12
Times Cited Count:19 Percentile:79.92(Multidisciplinary Sciences)Yan, S. Q.*; Li, X. Y.*; Nishio, Katsuhisa; Lugaro, M.*; Li, Z. H.*; Makii, Hiroyuki; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; Hirose, Kentaro; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
Times Cited Count:4 Percentile:19.57(Astronomy & Astrophysics)