Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shi, L.-D.*; West-Roberts, J.*; Schoelmerich, M. C.*; Penev, P. I.*; Chen, L.-X.*; Amano, Yuki; Lei, S.*; Sachdeva, R.*; Banfield, J. F.*
Nature Microbiology (Internet), 9(9), p.2422 - 2433, 2024/09
Times Cited Count:0 Percentile:0.00(Microbiology)Hu, F. F.*; Qin, T. Y.*; Ao, N.*; Su, Y. H.; Zhou, L.*; Xu, P. G.; Parker, J. D.*; Shinohara, Takenao; Chen, J.*; Wu, S. C.*
Engineering Fracture Mechanics, 306, p.110267_1 - 110267_18, 2024/08
Times Cited Count:0 Percentile:0.00(Mechanics)Zhang, Z.*; Hattori, Takanori; Song, R.*; Yu, D.*; Mole, R.*; Chen, J.*; He, L.*; Zhang, Z.*; Li, B.*
Journal of Applied Physics, 136(3), p.035105_1 - 035105_8, 2024/07
Times Cited Count:1 Percentile:0.00(Physics, Applied)Solid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF) and sodium hexafluoroarsenate (NaAsF) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF is a rhombohedral structure with space group R and NaAsF, i.e., F, E, and A. The phase transition temperature varies with pressure at a rate of dT/dP = 250 and 310 K/GPa for NaPF and NaAsF. The pressure-induced entropy changes of NaPF and NaAsF are determined to be around 45.2 and 35.6J kgK, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions.
Nguyen, B. V. C.*; Murakami, Kenta*; Chena, L.*; Phongsakorn, P. T.*; Chen, X.*; Hashimoto, Takashi; Hwang, T.*; Furusawa, Akinori; Suzuki, Tatsuya*
Nuclear Materials and Energy (Internet), 39, p.101639_1 - 101639_9, 2024/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Yamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.
Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02
Zhang, A.*; Deng, K.*; Sheng, J.*; Liu, P.*; Kumar, S.*; Shimada, Kenya*; Jiang, Z.*; Liu, Z.*; Shen, D.*; Li, J.*; et al.
Chinese Physics Letters, 40(12), p.126101_1 - 126101_8, 2023/12
Times Cited Count:7 Percentile:81.71(Physics, Multidisciplinary)Li, P. J.*; Beaumel, D.*; Lee, J.*; Assi, M.*; Chen, S.*; Franchoo, S.*; Gibelin, J.*; Hammache, F.*; Harada, T.*; Kanada-En'yo, Yoshiko*; et al.
Physical Review Letters, 131(21), p.212501_1 - 212501_7, 2023/11
Times Cited Count:11 Percentile:84.75(Physics, Multidisciplinary)The cluster structure of the neutron-rich isotope Be has been probed via the () reaction. The triple differential cross-section was extracted and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using the Tohsaki-Horiuchi-Schuck-Rpke wave function and the wave function deduced from Antisymmetrized Molecular Dynamics calculations. The remarkable agreement between calculated and measured cross-sections in both shape and magnitude validates the description of the Be ground-state as a rather compact nuclear molecule.
Shamoto, Shinichi; Yamauchi, Hiroki; Iida, Kazuki*; Ikeuchi, Kazuhiko*; Hall, A. E.*; Chen, Y.-S.*; Lee, M. K.*; Balakrishnan, G.*; Chang, L.-J.*
Communications Physics (Internet), 6, p.248_1 - 248_6, 2023/09
Times Cited Count:1 Percentile:30.70(Physics, Multidisciplinary)We show that the local spin correlation order has a spiral structure by neutron scattering measurement of a MnRhSi single crystal. The possible origins of the magnetic cluster formation are discussed in terms of the Lifshitz invariant and the Griffiths phase, and compared with the room-temperature skyrmion phase of CoZnMn and non-Fermi liquid behavior of -Mn.
Khalil, A. M. E.*; Han, L.*; Maamoun, I.; Tabish, T. A.*; Chen, Y.*; Eljamal, O.*; Zhang, S.*; Butler, D.*; Memon, F. A.*
Advanced Sustainable Systems (Internet), 6(8), p.2200016_1 - 2200016_16, 2022/08
Times Cited Count:6 Percentile:47.37(Green & Sustainable Science & Technology)Chen, L.*; Mao, C.*; Chung, J.-H.*; Stone, M. B.*; Kolesnikov, A. I.*; Wang, X.*; Murai, Naoki; Gao, B.*; Delaire, O.*; Dai, P.*
Nature Communications (Internet), 13, p.4037_1 - 4037_7, 2022/07
Times Cited Count:16 Percentile:78.21(Multidisciplinary Sciences)Oyanagi, Koichi*; Gomez-Perez, J. M.*; Zhang, X.-P.*; Kikkawa, Takashi*; Chen, Y.*; Sagasta, E.*; Chuvilin, A.*; Hueso, L. E.*; Golovach, V. N.*; Sebastian Bergeret, F.*; et al.
Physical Review B, 104(13), p.134428_1 - 134428_14, 2021/10
Times Cited Count:18 Percentile:77.05(Materials Science, Multidisciplinary)Mheust, R.*; Castelle, C. J.*; Matheus Carnevali, P. B.*; Farag, I. F.*; He, C.*; Chen, L.-X.*; Amano, Yuki; Hug, L. A.*; Banfield, J. F.*
ISME Journal, 14(12), p.2907 - 2922, 2020/12
Times Cited Count:62 Percentile:96.14(Ecology)Zhang, D.*; Hu, X.*; Chen, T.*; Abernathy, D. L.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Foley, B. J.*; Yoon, M.*; Choi, J. J.*; et al.
Physical Review B, 102(22), p.224310_1 - 224310_10, 2020/12
Times Cited Count:6 Percentile:32.86(Materials Science, Multidisciplinary)Dimitriou, P.*; Basunia, S*; Bernstein, L.*; Chen, J.*; Elekes, Z.*; Huang, X.*; Hurst, A.*; Iimura, Hideki; Jain, A. K.*; Kelley, J.*; et al.
EPJ Web of Conferences, 239, p.15004_1 - 15004_4, 2020/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The Evaluated Nuclear Structure Data File (ENSDF) includes the most extensive and comprehensive set of nuclear structure and decay data evaluations performed by the international network of Nuclear Structure and Decay Data evaluators (NSDD) under the auspices of the IAEA. In this report we describe some of the recent NSDD activities and provide future perspectives.
Chen, H.-X.*; Cui, E.-L.*; Hosaka, Atsushi; Mao, Q.*; Yang, H.-M.*
European Physical Journal C, 80(3), p.256_1 - 256_6, 2020/03
Times Cited Count:11 Percentile:56.67(Physics, Particles & Fields)Lokotko, T.*; Leblond, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Poves, A.*; Nowacki, F.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Authelet, G.*; et al.
Physical Review C, 101(3), p.034314_1 - 034314_7, 2020/03
Times Cited Count:11 Percentile:74.07(Physics, Nuclear)The structures of the neutron-rich Co isotopes were investigated via () knockout reactions at the Radioactive Isotope Beam Factory, RIKEN. Level schemes were reconstructed using the coincidence technique, with tentative spin-parity assignments based on the measured inclusive and exclusive cross sections. Comparison with shell-model calculations suggests coexistence of spherical and deformed shapes at low excitation energies in the Co isotopes.
Yang, H.-M.*; Chen, H.-X.*; Cui, E.-L.*; Hosaka, Atsushi; Mao, Q.*
European Physical Journal C, 80(2), p.80_1 - 80_17, 2020/02
Times Cited Count:21 Percentile:76.54(Physics, Particles & Fields)Li, X.*; Liu, P.-F.*; Zhao, E.*; Zhang, Z.*; Guide, T.*; Le, M. D.*; Avdeev, M.*; Ikeda, Kazutaka*; Otomo, Toshiya*; Kofu, Maiko; et al.
Nature Communications (Internet), 11, p.942_1 - 942_9, 2020/02
Times Cited Count:53 Percentile:92.39(Multidisciplinary Sciences)In high-performance thermoelectric materials, there are two main low thermal conductivity mechanisms: the phonon anharmonic and phonon scattering resulting from the dynamic disorder, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in -MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the intrinsic distorted rocksalt sublattice in this compound, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in -MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.
Vaquero, V.*; Jungclaus, A.*; Rodrguez-Snchez, J. L.*; Tostevin, J. A.*; Doornenbal, P.*; Wimmer, K.*; Chen, S.*; Orlandi, R.; 26 of others*
Physics Letters B, 795, p.356 - 361, 2019/08
Times Cited Count:4 Percentile:37.18(Astronomy & Astrophysics)Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.
Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07
Times Cited Count:9 Percentile:55.81(Physics, Multidisciplinary)Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.