Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Auh, Y. H.*; Neal, N. N.*; Arole, K.*; Regis, N. A.*; Nguyen, T.*; Ogawa, Shuichi*; Tsuda, Yasutaka; Yoshigoe, Akitaka; Radovic, M.*; Green, M. J.*; et al.
ACS Applied Materials & Interfaces, 17(21), p.31392 - 31402, 2025/05
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Lee, D. H.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
Nuclear Instruments and Methods in Physics Research A, 1072, p.170216_1 - 170216_6, 2025/03
Times Cited Count:2 Percentile:98.29(Instruments & Instrumentation)Nagasawa, Makoto*; Shimizu, Yusuke*; Yamaguchi, Akiko; Tokunaga, Kohei; Mukai, Hiroki*; Aoyagi, Noboru; Mei, H.; Takahashi, Yoshio*
Chemical Geology, 670, p.122431_1 - 122431_25, 2024/12
Times Cited Count:2 Percentile:64.73(Geochemistry & Geophysics)Sugiura, Yuki; Ishidera, Takamitsu; Aoyagi, Noboru; Mei, H.; Saito, Takumi*; Tachi, Yukio
Applied Clay Science, 258, p.107476_1 - 107476_10, 2024/09
Times Cited Count:2 Percentile:69.91(Chemistry, Physical)Endo, Shunsuke; Abe, Ryota*; Fujioka, Hiroyuki*; Ino, Takashi*; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kawamura, Shiori*; Kimura, Atsushi; Kitaguchi, Masaaki*; Kobayashi, Ryuju*; et al.
European Physical Journal A, 60(8), p.166_1 - 166_10, 2024/08
Times Cited Count:2 Percentile:74.11(Physics, Nuclear)Yuan, X.*; Hu, Q. H.*; Fang, X.*; Wang, Q. M.*; Ma, Y.*; Tachi, Yukio
Sedimentary Geology, 465, p.106633_1 - 106633_14, 2024/05
Times Cited Count:0 Percentile:0.00(Geology)Lee, D. H.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
European Physical Journal C, 84, p.409_1 - 409_6, 2024/04
Times Cited Count:1 Percentile:35.96(Physics, Particles & Fields)Mei, H.; Aoyagi, Noboru; Saito, Takumi*; Tanaka, Kazuya; Sugiura, Yuki; Tachi, Yukio
Applied Geochemistry, 162, p.105926_1 - 105926_8, 2024/02
Times Cited Count:2 Percentile:64.73(Geochemistry & Geophysics)Huang, Z.*; Wang, W.*; Ye, H.*; Bao, S.*; Shangguan, Y.*; Liao, J.*; Cao, S.*; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; Deng, G.*; et al.
Physical Review B, 109(1), p.014434_1 - 014434_9, 2024/01
Times Cited Count:3 Percentile:57.35(Materials Science, Multidisciplinary)Koyama, Shinichi; Ikeuchi, Hirotomo; Mitsugi, Takeshi; Maeda, Koji; Sasaki, Shinji; Onishi, Takashi; Tsai, T.-H.; Takano, Masahide; Fukaya, Hiroyuki; Nakamura, Satoshi; et al.
Hairo, Osensui, Shorisui Taisaku Jigyo Jimukyoku Homu Peji (Internet), 216 Pages, 2023/11
In FY 2021 and 2022, JAEA perfomed the subsidy program for "the Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris (Development of Technologies for Enhanced Analysis Accuracy, Thermal Bahavior Estimation, and Simplified Analysis of Fuel Debris)" started in FY 2021. This presentation material summarized the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning, Contaminated Water and Treated Water Management.
Soler, J. M.*; Kekl
inen, P.*; Pulkkanen, V.-M.*; Moreno, L.*; Iraola, A.*; Trinchero, P.*; Hokr, M.*;
ha, J.*; Havlov
, V.*; Trpko
ov
, D.*; et al.
Nuclear Technology, 209(11), p.1765 - 1784, 2023/11
Times Cited Count:4 Percentile:71.02(Nuclear Science & Technology)Taira, Yoshitaka*; Endo, Shunsuke; Kawamura, Shiori*; Nambu, Taro*; Okuizumi, Mao*; Shizuma, Toshiyuki*; Omer, M.; Zen, H.*; Okano, Yasuaki*; Kitaguchi, Masaaki*
Physical Review A, 107(6), p.063503_1 - 063503_10, 2023/06
Times Cited Count:5 Percentile:64.27(Optics)no abstracts in English
Osawa, Takahito; Nagasawa, Shunsaku*; Ninomiya, Kazuhiko*; Takahashi, Tadayuki*; Nakamura, Tomoki*; Wada, Taiga*; Taniguchi, Akihiro*; Umegaki, Izumi*; Kubo, Kenya*; Terada, Kentaro*; et al.
ACS Earth and Space Chemistry (Internet), 7(4), p.699 - 711, 2023/04
Times Cited Count:7 Percentile:75.48(Chemistry, Multidisciplinary)The concentrations of carbon and other major elements in asteroid samples provide very important information on the birth of life on the Earth and the solar-system evolution. Elemental analysis using muonic X-rays is one of the best analytical methods to determine the elemental composition of solid materials, and notably, is the only method to determine the concentration of light elements in bulk samples in a non-destructive manner. We developed a new analysis system using muonic X-rays to measure the concentrations of carbon and other major elements in precious and expectedly tiny samples recovered from the asteroid Ryugu by spacecraft Hayabusa2. Here we report the development process of the system in 4 stages and their system configurations, The analysis system is composed of a stainless-steel analysis chamber, an acrylic glove box for manipulating asteroid samples in a clean environment, and Ge semiconductor detectors arranged to surround the analysis chamber. The performance of the analysis system, including the background level, which is crucial for the measurement, was greatly improved from the first stage to the later ones. Our feasibility study showed that the latest model of our muonic X-ray analysis system is capable of determining the carbon concentration in Hayabusa2's sample model with an uncertainty of less than 10 percent in a 6-day measurement.
Miyazawa, Takeshi; Kikuchi, Yuta*; Ando, Masami*; Yu, J.-H.*; Yabuuchi, Kiyohiro*; Nozawa, Takashi*; Tanigawa, Hiroyasu*; Nogami, Shuhei*; Hasegawa, Akira*
Journal of Nuclear Materials, 575, p.154239_1 - 154239_11, 2023/03
Times Cited Count:4 Percentile:71.02(Materials Science, Multidisciplinary)Akuzawa, Tadashi*; Kim, S.-Y.*; Kubota, Masahiko*; Wu, H.*; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Arai, Tsuyoshi*
Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5851 - 5858, 2022/12
Times Cited Count:5 Percentile:60.29(Chemistry, Analytical)Yamamoto, Takeshi; Fujita, Manami; Gogami, Toshiyuki*; Harada, Takeshi*; Hayakawa, Shuhei*; Hosomi, Kenji; Ichikawa, Yudai; Ishikawa, Yuji*; Kamata, K.*; Kanauchi, H.*; et al.
EPJ Web of Conferences, 271, p.03001_1 - 03001_5, 2022/11
Fujita, Manami; Hosomi, Kenji; Ishikawa, Yuji*; Kanauchi, H.*; Koike, Takeshi*; Ogura, Yu*; Tamura, Hirokazu; Tanida, Kiyoshi; Ukai, Mifuyu*; Yamamoto, Takeshi
Nuclear Instruments and Methods in Physics Research A, 1042, p.167439_1 - 167439_9, 2022/11
Times Cited Count:3 Percentile:31.55(Instruments & Instrumentation)Yamanaka, Takamitsu*; Hirao, Naohisa*; Nakamoto, Yuki*; Mikouchi, Takashi*; Hattori, Takanori; Komatsu, Kazuki*; Mao, H.-K.*
Physics and Chemistry of Minerals, 49(10), p.41_1 - 41_14, 2022/10
Times Cited Count:3 Percentile:7.21(Materials Science, Multidisciplinary)Magnetic and crystal structure of MnFe
O
solid solutions under high-PT conditions are investigated by neutron diffraction and synchrotron M
ssbauer spectroscopy. The ferrimagnetic-paramagnetic transition and tetragonal-cubic transition of Mn
FeO
spinel occur at 100
C and 180
C, respectively, suggesting both the transitions are not coupled. The structure transition temperature decreases with pressure. M
ssbauer experiments and neutron diffraction revealed that the Fe
occupancy in tetrahedral site increases increase with pressure, suggesting Mn
FeO
phase approaches inverse spinel. Magnetic structure refinement clarified paramagnetic and ferrimagnetic structure of MnFe
O
and Mn
FeO
. These spinels transform into high-pressure orthorhombic phases at 18.4 and 14.0 GPa, respectively, indicating lower transition pressure with increasing Mn content.
Matsuda, Shohei; Nakashima, Nobuaki*; Yokoyama, Keiichi; Taniguchi, Seiji*; Chosrowjan, H.*; Somekawa, Toshihiro*; Yatsuhashi, Tomoyuki*
Chemical Physics Letters, 802, p.139759_1 - 139759_6, 2022/09
Times Cited Count:1 Percentile:6.45(Chemistry, Physical)no abstracts in English
Kondo, Yasuhiro; Kitamura, Ryo; Fuwa, Yasuhiro; Morishita, Takatoshi; Moriya, Katsuhiro; Takayanagi, Tomohiro; Otani, Masashi*; Cicek, E.*; Ego, Hiroyasu*; Fukao, Yoshinori*; et al.
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.636 - 641, 2022/09
The muon linac project for the precise measurement of the muon anomalous magnetic and electric dipole moments, which is currently one of the hottest issues of the elementary particle physics, is in progress at J-PARC. The muons from the J-PARC muon facility are once cooled to room temperature, then accelerated up to 212 MeV with a normalized emittance of 1.5 mm mrad and a momentum spread of 0.1%. Four types of accelerating structures are adopted to obtain the efficient acceleration with a wide beta range from 0.01 to 0.94. The project is moving into the construction phase. We already demonstrated the re-acceleration scheme of the decelerated muons using a 324-MHz RFQ in 2017. The high-power test of the 324-MHz Interdigital H-mode (IH) DTL using a prototype cavity was performed in 2021. The fabrication of the first module of 14 modules of the 1296-MHz Disk and Washer (DAW) CCL will be done to confirm the production process. Moreover, the final design of the travelling wave accelerating structure for the high beta region is also proceeding. In this paper, the recent progress toward the realization of the world first muon linac will be presented.