Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kamide, Hideki; Kawasaki, Nobuchika; Hayafune, Hiroki; Kubo, Shigenobu; Chikazawa, Yoshitaka; Maeda, Seiichiro; Sagayama, Yutaka; Nishihara, Tetsuo; Sumita, Junya; Shibata, Taiju; et al.
Jisedai Genshiro Ga Hiraku Atarashii Shijo; NSA/Commentaries, No.28, p.14 - 36, 2023/10
Developments of next generation nuclear reactors, e.g., Fast Reactor, and High Temperature Gas cooled Reactor, are in progress. They can contribute to markets of electricity and industrial heat utilization in the world including Japan. Here, current status of reactor developments in Japan and also situation in the world are summarized, especially for activities of Generation IV International Forum (GIF), developments of Fast Reactor and High Temperature Gas cooled Reactor in Japan, and SMR movements in the world.
Takano, Kazuya; Oki, Shigeo; Doda, Norihiro; Chikazawa, Yoshitaka; Maeda, Seiichiro
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 7 Pages, 2023/04
The MOX fueled SMR-SFRs with lower linear heat rating of 100 W/cm and 50 W/cm, whereas the linear heat rating at rated power is around 400 W/cm in general, were designed to decrease the fuel temperature during its rated power state in order to pursue the inherent core safety for MOX fueled SMR-SFRs. The transient analyses for Anticipated Transient Without Scram (ATWS) events represented by an Unprotected Loss of Flow (ULOF) accident on the lower linear heat rating cores were performed considering their inherent feedback reactivity. Through the transient analysis, the inherent core safety performances for the lower linear heat rating cores were discussed based on the evaluated maximum coolant temperature and Cumulative Damage Fraction (CDF) as criteria to maintain the core and fuel integrity. The feasible design window for MOX fueled SMR-SFRs with the inherent core safety focusing on the linear heat rating was identified based on the transient analysis results.
Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Kamide, Hideki
Handbook of Generation IV Nuclear Reactors, Second Edition, p.173 - 194, 2023/03
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. JAEA contributes to Chapter 5; Sodium-cooled Fast Reactors (SFRs) and Chapter 12; Generation-IV Sodium-cooled Fast Reactor (SFR) concepts in Japan. Major characteristics and current technology developments including safety enhancement were described in Chapter 5. Chapter 12 shows design activities of SFR. Innovative technology developments, and update of the Japan sodium-cooled fast reactor design with lessons learned from the TEPCO Fukushima Daiichi NPP accident.
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Kato, Atsushi; Yamamoto, Tomohiko; Ando, Masato; Chikazawa, Yoshitaka; Murakami, Hisatomo*; Oyama, Kazuhiro*; Kaneko, Fumiaki*; Higurashi, Koichi*; Chanteclair, F.*; Chenaud, M.-S.*; et al.
EPJ Nuclear Sciences & Technologies (Internet), 8, p.11_1 - 11_10, 2022/06
This paper provides an overview of plant system studies to establish a common technical view for Sodium-cooled Fast Reactor concept between France and Japan based on ASTRID600 and the new concept with downsized output called ASTRID150. One of important issues on a reactor structure design is to enhance seismic resistance to be tolerable against strong earthquake such that postulated in Japan. A concept of High Frequency Design is shared, and the design options related to HFD have been examined and design recommendations are established. In addition, this paper include results of studies for a steam generator, a decay heat removal system, a fuel handling system and a containment vessel.
Kato, Atsushi; Kubo, Shigenobu; Chikazawa, Yoshitaka; Miyagawa, Takayuki*; Uchita, Masato*; Suzuno, Tetsuji*; Endo, Junji*; Kubo, Koji*; Murakami, Hisatomo*; Uzawa, Masayuki*; et al.
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 11 Pages, 2022/04
The authors are carrying out conceptual design studies for a pool-type sodium-cooled fast reactor. There are main challenges such as measures against severe earthquake in Japan, thermal hydraulic in a reactor vessel (RV), a decay heat removal system design. When the JP-pool SFR of 650 MWe is installed in Japan, it shall be designed against the severe seismic conditions. Additionally, a newly three-dimensional seismic isolation system is under development.
Fukaya, Yuji; Ueta, Shohei; Yamamoto, Tomohiko; Chikazawa, Yoshitaka; Yan, X.
Nuclear Technology, 208(2), p.335 - 346, 2022/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)When the total volume control on toxicity for nuclear waste management is applied, it becomes a limiting factor for the permittable total operation capacity of nuclear reactors. An alternative conceptual scenario to achieve the control is proposed that aims at toxicity reduction through Partitioning and Transmutation (P&T). Specifically, the electricity generation capacity could be inversely increased up with transmutation of Sr-
Cs. Simultaneously, the cooling time before disposal is reduced to 50 years from the 300 years required by the existing scenarios such as (Accelerator Driven System (ADS). Finally, the scenario is also found feasible in terms of energy balance and cost by the neutron source of Li(d,xn) reaction with the deuteron accelerator for transmutation.
Yamamoto, Tomohiko; Kato, Atsushi; Chikazawa, Yoshitaka; Hara, Hiroyuki*
Nuclear Technology, 206(12), p.1875 - 1890, 2020/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)This paper gives a detailed evaluation of the countermeasures for the external hazards and severe accidents that could impact the 2010 JSFR design building by lessons learned from the Fukushima Daiichi Nuclear Power Plant (Fukushima I NPP) accident.
Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.
Mechanical Engineering Journal (Internet), 7(3), p.19-00489_1 - 19-00489_16, 2020/06
The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.
Aizawa, Kosuke; Chikazawa, Yoshitaka; Ara, Kuniaki; Yui, Masahiro*; Jinno, Kentaro*; Hiramatsu, Takashi*
Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 7 Pages, 2019/05
Inspection technique in opaque liquid metal coolant is one of important issues for sodium-cooled fast reactors. Various under sodium viewers (USVs), including horizontal USVs for obstacle detection and imaging USVs, have been developed in several research institutes and countries. We aim practical realization of imaging USV which adopts an optical receiving system, which measures the vibration displacement of diaphragm by using a laser as a receiving sensor. This study mainly focuses on the sensitivity improvement of a receiving sensor. An issue for the sensitivity improvement of the receiving sensor is the sound pressure propagation inside the receiving sensor. Prototype tests in the water and sodium were conducted in order to resolve the issue. In addition, imaging experiments in the water and sodium were conducted using the improved receiving sensor. From the results of imaging experiments, the relation between obtained wave profile and the regeneration imaging was confirmed.
Chikazawa, Yoshitaka; Takaya, Shigeru; Tagawa, Akihiro; Kubo, Shigenobu
Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 6 Pages, 2019/05
A maintenance management required to prototype nuclear power reactors has been developed. One of important mission of a prototype reactor is to develop maintenance program for commercial reactors step by step securing safety. Since operating experience at the early stage is limited, the maintenance program for the prototype reactor should be a progressive one. It has to be modified and improved frequently taking into account R&D insight and operation experiences. Additionally, the maintenance program has to consider features of the prototype reactor even at the early stage. To select maintenance grades on particular components/systems, risk informed and graded approaches are effective. And maintenance programs have to take into account degradation mechanism originally due to reactor features. In this paper, applications for maintenance program on sodium valves of prototype fast breeder reactor Monju are studied as an example of prototype sodium-cooled reactors (SFR).
Onoda, Yuichi; Chikazawa, Yoshitaka; Nakamura, Hironori*; Barbier, D.*; Dirat, J.-F.*
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05
no abstracts in English
Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05
The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.
Aizawa, Kosuke; Chikazawa, Yoshitaka; Morohashi, Yuko
Journal of Nuclear Science and Technology, 55(12), p.1393 - 1401, 2018/12
Times Cited Count:2 Percentile:18.61(Nuclear Science & Technology)Measurement of the temperature and flow rate at each fuel subassembly outlet is an effective way for a liquid metal fast breeder reactor to detect a loss of coolant accident or reactivity-initiated accident in the early stage and to understand the reactor's thermal hydrodynamic performance. Japan Atomic Energy Agency has developed the eddy current flowmeter in practical use and installed 34 of them in the upper core structure of fast breeder reactor, Monju. This report presents data obtained by using the flowmeters in Monju. We observed high linearity between each of the flowmeter's signal intensity and the primary sodium's flow rate under 10-100% flow rate condition. The fluctuation of flow rate observed by the flowmeters was below 0.2 m/s which is 5% of the time-averaged velocity under a rated condition. These experimental results show that the eddy current flowmeter is an effective tool to detect the changes in relative flow rate.
Aizawa, Kosuke; Sasaki, Koei; Chikazawa, Yoshitaka; Fukuie, Masaru*; Jimbo, Noboru*
Nuclear Technology, 204(1), p.74 - 82, 2018/10
Times Cited Count:3 Percentile:26.28(Nuclear Science & Technology)Development of inspection technique in opaque liquid metal coolant is one of the important issues to ensure the safety of Liquid Metal Fast Breeder Reactor (LMFBR). Performance tests of an Under Sodium Viewer (USV), which was developed to detect an obstacle in the reactor vessel (RV) of LMFBR Monju, have been carried out. The ultrasonic sensors and reflectors are located across the core inside of the Monju's RV. The USV can detect an obstacle existing in between the core top and the Upper Core Structure (UCS) bottom by identifying differences of echo signals. This report describes the USV performance tests. In the tests, the reference echo signals under various conditions were accumulated and the signal to noise ratio successfully exceeded the target value. Measured signals clearly differed from with and without an obstacle. These experimental results show the performance of the USV for detecting an obstacle in the specified place.
Uchita, Masato*; Miyagawa, Takayuki*; Dozaki, Koji*; Chikazawa, Yoshitaka; Kubo, Shigenobu; Hayafune, Hiroki; Suzuno, Tetsuji*; Fukasawa, Tsuyoshi*; Kamishima, Yoshio*; Fujita, Satoshi*
Proceedings of 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) (CD-ROM), p.380 - 386, 2018/04
It is well-known that pool-type SFRs are the main streams recently in a field of Generation IV reactors. The pool-type encloses primary pumps and IHXs located around the core barrel in a main vessel. Consequently, the main vessel diameter trends to be larger than that of loop-types. From the viewpoint of commercialization in the future, a target of the vessel diameter and its weight including Sodium coolant will increase further. In this paper, the prospects are described in terms of seismic design and structural integrity for the thermal loadings to prevent buckling of the reactor vessel based on parameter studies with diameters of the vessel. In addition, the seismic isolation device which will be effective as a countermeasure is proposed in order to secure a margin against buckling of a large reactor vessel.
Aizawa, Kosuke; Chikazawa, Yoshitaka; Ara, Kuniaki; Yui, Masahiro*; Uemoto, Yohei*; Kurokawa, Masaaki*; Hiramatsu, Takashi*
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Next Generation Nuclear Systems for Sustainable Development (FR-17) (USB Flash Drive), 9 Pages, 2017/06
Inspection in opaque liquid metal coolant is one of important issues for sodium-cooled fast reactors. To facilitate operations and maintenance activities, various under sodium viewers (USVs), including horizontal USVs for obstacle detection for a long distance and imaging USVs for a short and middle distance imaging, have been developed in several research institutes and countries. In this study, an imaging USV for a middle distance, approximately 1 m, has been developed. The USV in this study adopts an optical receiving system which measures the vibration displacement of diaphragm by using a laser as a receiving sensor. This study mainly focuses on the sensitivity improvement for a transmission sensor and the receiving sensor. In addition, an imaging experiment in the water was conducted using the new transmission sensor and receiving sensor. The experimental results showed that the newly developed USV sensors can make higher resolution images of a target than the previous sensors.
Hayafune, Hiroki; Chikazawa, Yoshitaka; Kamide, Hideki; Iwasaki, Mikinori*; Shoji, Takashi*
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Next Generation Nuclear Systems for Sustainable Development (FR-17) (USB Flash Drive), 11 Pages, 2017/06
Design studies on a next generation sodium-cooled fast reactor (SFR) considering the safety design criteria (SDC) developed in the generation IV international forum (GIF) was summarized. To meet SDC including the lessons learned from the TEPCO's Fukushima Dai-ichi Nuclear Power Plants accident, the heat removal function was enhanced to avoid loss of the function even if any internal events exceeding design basis or severe external event happen. Several design options have been investigated and auxiliary core cooling system using air as ultimate heat sink has been selected as an additional cooling system regarding system reliability and diversification. Even though the next generation SFR already adopts seismic isolation system, main component designs have been improved considering revised earthquake conditions. For other external events, design measures for various external events are taken into account. Reactor building design has been improved and important safety components are diversified and located separately improving independency. Those design studies and evaluations on the next generation sodium-cooled reactor have contributed to the development of safety design guidelines (SDG) which is under discussion in the GIF framework.
Chikazawa, Yoshitaka; Kubo, Shigenobu; Shimakawa, Yoshio*; Kaneko, Fumiaki*; Shoji, Takashi*; Nakata, Shuhei*
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04
Sodium-cooled reactor (SFR) has superior characteristics thanks to sodium coolant features such as low pressure and high natural convection capability. Involving lessons learned from the 1F accident, requirements on design base DHRS have been modified. In that modification, safety requirements on design extended conditions have been clarified and sodium temperature criteria have been changed taking into account design margin even for design extended conditions. With the new DHRS configuration including ACS, designs of component cooling water system and emergency power supply have been updated.
Arai, Masanobu; Kunogi, Kosuke; Aizawa, Kosuke; Chikazawa, Yoshitaka; Takaya, Shigeru; Kubo, Shigenobu; Kotake, Shoji*; Ito, Takaya*; Yamaguchi, Akira*
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04
Applications for maintenance program on piping support of prototype fast breeder reactor Monju are studied. Based on degradation mechanism, snubbers in Monju primary cooling system showed lifetime more than the plant lifetime of 30 years by experiments conservatively. For the first step during construction, visual inspection on accessible all supports could be available. In that visual inspection, mounting conditions and damages of all accessible supports could be monitored. One of major features of the Monju primary piping system is large thermal expansion due to large temperature difference between maintenance and operation conditions. Thanks to that large thermal expansion, integrity of the piping support could be monitored by measuring piping displacement. When technologies of piping displacement monitoring are matured in Monju, visual inspection on piping support could be shifted to piping displacement monitoring. At that stage, the visual inspection could be limited only on representative supports.