Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nishiuchi, Mamiko; Choi, I. W.*; Daido, Hiroyuki; Nakamura, Tatsufumi*; Pirozhkov, A. S.; Yogo, Akifumi*; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; Daito, Izuru*; et al.
Plasma Physics and Controlled Fusion, 57(2), p.025001_1 - 025001_9, 2015/02
Times Cited Count:3 Percentile:13.15(Physics, Fluids & Plasmas)Projection images of a metal mesh produced by directional MeV electron beam together with directional proton beam, emitted simultaneously from a thin foil target irradiated by an ultrashort intense laser. The mesh patterns are projected to each detector by the electron beam and the proton beam originated from tiny virtual sources of 20 micron meter and 10 micron meter diameters, respectively. Based on the observed quality and magnification of the projection images, we estimate sizes and locations of the virtual sources for both beams and characterize their directionalities. To carry out physical interpretation of the directional electron beam qualitatively, we perform 2D particle-in-cell simulation which reproduces a directional escaping electron component, together with a non-directional dragged-back electron component, the latter mainly contributes to building a sheath electric field for proton acceleration.
Choi, I. W.*; Kim, I. J.*; Pae, K. H.*; Nam, K. H.*; Lee, C.-L.*; Yun, H.*; Kim, H. T.*; Lee, S. K.*; Yu, T. J.*; Sung, J. H.*; et al.
Applied Physics Letters, 99(18), p.181501_1 - 181501_3, 2011/11
Times Cited Count:17 Percentile:56.85(Physics, Applied)We report the manufacturing of a thin foil target made of conjugated polymer, and the simultaneous observation of laser accelerated ions and second harmonic radiation, when irradiated with ultrahigh-contrast laser pulse at a maximum intensity of 410 W/cm. Maximum proton energy of 8 MeV is achieved along the target normal direction. Strong second harmonic with over 6% energy ratio compared to fundamental is emitted along the specular direction. Two-dimensional particle-in-cell simulations confirm the simultaneous generation of protons and high-order harmonics, which demonstrates the feasibility of applications requiring particle and radiation sources at once, effectively using the same laser and target.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Y.*; Al-Bataineh, H.*; Alexander, J.*; Aoki, K.*; Aphecetche, L.*; Armendariz, R.*; et al.
Physical Review D, 84(1), p.012006_1 - 012006_18, 2011/07
Times Cited Count:31 Percentile:73.56(Astronomy & Astrophysics)We report on the event structure and double helicity asymmetry () of jet production in longitudinally polarized collisions at = 200 GeV. Photons and charged particles were measured by the PHENIX experiment. Event structure was compared with the results from PYTHIA event generator. The production rate of reconstructed jets is satisfactorily reproduced with the next-to-leading-order perturbative QCD calculation. We measured = -0.0014 0.0037 at the lowest bin and -0.0181 0.0282 at the highest bin. The measured is compared with the predictions that assume various distributions.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.
Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06
Times Cited Count:189 Percentile:99.42(Physics, Nuclear)Transverse momentum distributions and yields for , and in collisions at = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different collisions. We also present the scaling properties such as and scaling and discuss the mechanism of the particle production in collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.
Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04
Times Cited Count:9 Percentile:52.33(Physics, Nuclear)Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to collisions.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Y.*; Al-Bataineh, H.*; Alexander, J.*; Aoki, K.*; Aphecetche, L.*; Armendariz, R.*; et al.
Physical Review D, 83(5), p.052004_1 - 052004_26, 2011/03
Times Cited Count:180 Percentile:98.41(Astronomy & Astrophysics)The PHENIX experiment at RHIC has measured the invariant differential cross section for production of , , and mesons in collisions at = 200 GeV. The spectral shapes of all hadron transverse momentum distributions are well described by a Tsallis distribution functional form with only two parameters, and , determining the high and characterizing the low regions for the spectra, respectively. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.
Yang, H. L.*; Kim, Y. S.*; Park, Y. M.*; Bae, Y. S.*; Kim, H. K.*; Kim, K. M.*; Lee, K. S.*; Kim, H. T.*; Bang, E. N.*; Joung, M.*; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
Because the 2010 operation of Korea Superconducting Tokamak Advanced Research (KSTAR) mainly aims to achieve strongly elongated and diverted plasma, all the necessary hardware systems to provide an essential circumstance for the plasma shaping were newly installed and upgraded in 2010. In this paper, general configuration of the upgraded systems described earlier will be outlined. Moreover, several key performances and test results of the systems will be also reported in summary.
Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.
NIFS-PROC-85, p.30 - 33, 2011/02
The experiment of proton generation is performed for developing the laser-driven ion source. We observe proton signals in the laser-plasma interaction by using a thin-foil target. To get higher energy protons the size of the preformed plasma is reduced by changing the laser contrast level. In the high-contrast laser pulse case the maximum energy of the protons generated at rear side of the target increases.
Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.
Reza Kenkyu, 38(9), p.702 - 705, 2010/09
High-intensity laser and thin-foil interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz (THz) radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical applications. In this study we have tested simultaneous generation of protons and THz radiation from a thin-foil target. We use a Ti:sapphire laser system (J-KAREN) at JAEA. A laser beam is focused by an off-axis parabolic mirror at the thin-foil target. We observed the high-energy proton in the rear side of the target and THz radiation in the reflected direction. Next, high energy protons are observed by reducing the size of preformed plasma.
Nishiuchi, Mamiko; Daito, Izuru; Ikegami, Masahiro; Daido, Hiroyuki; Mori, Michiaki; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Pirozhkov, A. S.; et al.
Applied Physics Letters, 94(6), p.061107_1 - 061107_3, 2009/02
Times Cited Count:63 Percentile:88.15(Physics, Applied)A pair of conventional permanent magnet quadrupoles is used to focus a 2.4 MeV laser-driven proton beam at a 1 Hz repetition rate. The magnetic field strengths are 55 T/m and 60 T/m for the first and second quadrupoles respectively. The proton beam is focused to a spot size (full width at half maximum) of 2.78 mm at a distance of 650 mm from the source. This result is in good agreement with a Monte Carlo particle trajectory simulation.
Mori, Michiaki; Yogo, Akifumi; Kiriyama, Hiromitsu; Nishiuchi, Mamiko; Ogura, Koichi; Orimo, Satoshi; Ma, J.*; Sagisaka, Akito; Kanazawa, Shuhei; Kondo, Shuji; et al.
IEEE Transactions on Plasma Science, 36(4), p.1872 - 1877, 2008/08
Times Cited Count:7 Percentile:27.90(Physics, Fluids & Plasmas)A dependence of cut-off proton kinetic energy on laser prepulse duration has been observed. ASE pedestal duration is controlled by a fast electro-optic pulse slicer where the risetime is estimated to be 130 ps. We demonstrate a new correlated spectral technique for determining this risetime using a stretched, frequency chirped pulse.
Nishiuchi, Mamiko; Daido, Hiroyuki; Yogo, Akifumi; Orimo, Satoshi; Ogura, Koichi; Ma, J.-L.; Sagisaka, Akito; Mori, Michiaki; Pirozhkov, A. S.; Kiriyama, Hiromitsu; et al.
Physics of Plasmas, 15(5), p.053104_1 - 053104_10, 2008/05
Times Cited Count:45 Percentile:83.63(Physics, Fluids & Plasmas)High-flux energetic protons whose maximum energies are up to 4 MeV are generated by an intense femtosecond Titanium Sapphire laser pulse interacting with a 7.5, 12.5, and 25m thick Polyimide tape targets. The laser pulse energy is 1.7 J, duration is 34 fs, and intensity is 310Wcm. The amplified spontaneous emission (ASE) has the intensity contrast ratio of 410. The conversion efficiency from laser energy into proton kinetic energies of 3% is achieved, which is comparable or even higher than those achieved in the previous works with nanometer-thick targets and the ultrahigh contrast laser pulses (10).
Li, Z.*; Daido, Hiroyuki; Fukumi, Atsushi*; Bulanov, S. V.; Sagisaka, Akito; Ogura, Koichi; Yogo, Akifumi; Nishiuchi, Mamiko; Orimo, Satoshi; Mori, Michiaki; et al.
Physics Letters A, 369(5-6), p.483 - 487, 2007/10
Times Cited Count:10 Percentile:53.31(Physics, Multidisciplinary)The energy spectra of energetic protons emitted in the normal direction from a 5-m thick copper tape irradiated by p-, circularly-, and s-polarized 55-fs laser pulses with intensity of 8-910W/cm are measured together with the angular distribution and energy spectra of hot electrons by the target normal direction. The protons with energy up to 1.34 MeV in the rear target normal direction and hot electrons in the laser propagation direction are found. The characters of protons and electrons driven by the circularly-polarized irradiation are close to that driven by the p-polarized one, which is much different from the case at laser intensity of 2-310W/cm.
Orimo, Satoshi; Nishiuchi, Mamiko; Daido, Hiroyuki; Yogo, Akifumi; Ogura, Koichi; Sagisaka, Akito; Li, Z.*; Pirozhkov, A. S.; Mori, Michiaki; Kiriyama, Hiromitsu; et al.
Japanese Journal of Applied Physics, Part 1, 46(9A), p.5853 - 5858, 2007/09
Times Cited Count:18 Percentile:56.22(Physics, Applied)A laser-driven proton beam with a maximum energy of a few MeV is stably obtained using an ultra-short and high-intensity Titanium Sapphire laser. At the same time, keV X-ray is also generated at almost the same place where protons are emitted. Here, we show the successful demonstration of simultaneous proton and X-ray projection images of a test sample placed close to the source with a resolution of 10m, which is determined from the source sizes. Although the experimental configuration is very simple, the simultaneity is better than a few hundreds of ps. A CR-39 track detector and imaging plate, which are placed as close as possible to the CR-39, are used as detectors of protons and X-ray. The technique is applicable to the precise observation of microstructures.
Yogo, Akifumi; Daido, Hiroyuki; Fukumi, Atsushi*; Li, Z.*; Ogura, Koichi; Sagisaka, Akito; Pirozhkov, A. S.; Nakamura, Shu*; Iwashita, Yoshihisa*; Shirai, Toshiyuki*; et al.
Physics of Plasmas, 14(4), p.043104_1 - 043104_6, 2007/04
Times Cited Count:63 Percentile:87.96(Physics, Fluids & Plasmas)Fast protons are observed by a newly-developed time-of-flight spectrometer, which provides proton-energy distributions immediately after the irradiation of a laser pulse having an intensity of W/cm onto a 5-m-thick copper foil. The maximum proton energy is found to increase when the intensity of a fs-prepulse arriving 9 ns before the main pulse increases from 10 to 10 W/cm. Interferometric measurement indicates that the preformed-plasma expansion at the front surface is smaller than 15 m, which corresponds to the spatial resolution of the diagnostics. This sharp gradient of the plasma makes a beneficial effect on increasing the absorption efficiency of the main-pulse energy, resulting in the increase in the proton energy. This is supported by the result that the X-ray intensity from the laser plasma clearly increases with the prepulse intensity.
Jeong, T.*; Choi, I. W.*; Sung, J. H.*; Kim, H.*; Hong, K.*; Yu, T.*; Kim, J.-H.*; Noh, Y.*; Ko, D.-K.*; Lee, J.*; et al.
Journal of the Korean Physical Society, 50(1), p.34 - 39, 2007/01
no abstracts in English
Daido, Hiroyuki; Sagisaka, Akito; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Mori, Michiaki; Ma, J.-L.; Pirozhkov, A. S.; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.
Proceedings of 7th Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR 2007) (CD-ROM), p.77 - 79, 2007/00
We are developing a proton accelerator using an intense lasers with a focused intensity of 10 W/cm. To monitor proton energy spectra as well as plasma parameters at each laser shot, we are using real time detectors. The proton energy of MeV is stably obtained for applications.
Daido, Hiroyuki; Sagisaka, Akito; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Yogo, Akifumi; Mori, Michiaki; Li, Z.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.
X-Ray Lasers 2006; Springer Proceedings in Physics, Vol.115, p.595 - 605, 2007/00
At present, using ultra-short high intensity lasers at APRC, JAEA Kansai photon research institute, we are developing laser driven multiple quantum beams such as protons, X-rays, electrons and THz waves. These beams are perfectly synchronized with each other. The pulse duration of each beam is lass than a pico-second. They have sharp directionality with high brightness. If we properly combined these, we have new pump-probe techniques for various applications.
Sagisaka, Akito; Pirozhkov, A. S.; Daido, Hiroyuki; Fukumi, Atsushi*; Li, Z.*; Ogura, Koichi; Yogo, Akifumi; Oishi, Yuji*; Nayuki, Takuya*; Fujii, Takashi*; et al.
Applied Physics B, 84(3), p.415 - 419, 2006/09
Times Cited Count:21 Percentile:65.58(Optics)no abstracts in English
Kang, J.-S.*; Kim, J. H.*; Sekiyama, Akira*; Kasai, Shuichi*; Suga, Shigemasa*; Han, S. W.*; Kim, K. H.*; Choi, E. J.*; Kimura, Tsuyoshi*; Muro, Takayuki*; et al.
Physical Review B, 68(1), p.012410_1 - 012410_4, 2003/07
Times Cited Count:21 Percentile:67.75(Materials Science, Multidisciplinary)no abstracts in English