Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.
Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05
Times Cited Count:3 Percentile:94.57(Nuclear Science & Technology)Kitamura, Ryo; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kim, B.*; Kondo, Yasuhiro; Mibe, Tsutomu*; et al.
Physical Review Accelerators and Beams (Internet), 24(3), p.033403_1 - 033403_9, 2021/03
Times Cited Count:2 Percentile:29.07(Physics, Nuclear)A negative muonium ion (Mu) source using an aluminum foil target was developed as a low-energy muon source. An experiment to produce Mu ions was conducted to evaluate the performance of the Mu ion source. The measured event rate of Mu ions was Mu/s when the event rate of the incident muon beam was /s. The formation probability, defined as the ratio of the Mu ions to the incident muons on the Al target, was . This Mu ion source boosted the development of the muon accelerator, and the practicality of this low-energy muon source obtained using a relatively simple apparatus was demonstrated.
Zhang, D.*; Hu, X.*; Chen, T.*; Abernathy, D. L.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Foley, B. J.*; Yoon, M.*; Choi, J. J.*; et al.
Physical Review B, 102(22), p.224310_1 - 224310_10, 2020/12
Times Cited Count:6 Percentile:33.94(Materials Science, Multidisciplinary)Herranz, L. E.*; Jacquemain, D.*; Nitheanandan, T.*; Sandberg, N.*; Barr, F.*; Bechta, S.*; Choi, K.-Y.*; D'Auria, F.*; Lee, R.*; Nakamura, Hideo
Progress in Nuclear Energy, 127, p.103432_1 - 103432_14, 2020/09
Times Cited Count:4 Percentile:19.21(Nuclear Science & Technology)Woo, W.*; Jeong, J.-S.*; Kim, D.-K.*; Lee, C. M.*; Choi, S.-H.*; Suh, J.-Y.*; Lee, S. Y.*; Harjo, S.; Kawasaki, Takuro
Scientific Reports (Internet), 10(1), p.1350_1 - 1350_15, 2020/01
Times Cited Count:77 Percentile:94.68(Multidisciplinary Sciences)Carter, L. M.*; Crawford, T. M.*; Sato, Tatsuhiko; Furuta, Takuya; Choi, C.*; Kim, C. H.*; Brown, J. L.*; Bolch, W. E.*; Zanzonico, P. B.*; Lewis, J. S.*
Journal of Nuclear Medicine, 60(12), p.1802 - 1811, 2019/12
Times Cited Count:25 Percentile:81.75(Radiology, Nuclear Medicine & Medical Imaging)Voxel human phantoms have been used for internal dose assessment. More anatomically accurate representation become possible for skins or layer tissues owing to recent developments of advanced polygonal mesh-type phantoms and thus internal dose assessment using those advanced phantoms are desired. However, the Monte Carlo transport calculation by implementing those phantoms require an advanced knowledge for the Monte Carlo transport codes and it is only limited to experts. We therefore developed a tool, PARaDIM, which enables users to conduct internal dose calculation with PHITS easily by themselves. With this tool, a user can select tetrahedral-mesh phantoms, set radionuclides in organs, and execute radiation transport calculation with PHITS. Several test cases of internal dosimetry calculations were presented and usefulness of this tool was demonstrated.
Nakazawa, Yuga*; Bae, S.*; Choi, H.*; Choi, S.*; Iijima, Toru*; Iinuma, Hiromi*; Kawamura, Naritoshi*; Kitamura, Ryo; Kim, B.*; Ko, H. S.*; et al.
Nuclear Instruments and Methods in Physics Research A, 937, p.164 - 167, 2019/09
Times Cited Count:2 Percentile:21.69(Instruments & Instrumentation)A muon linac is under development for the precise measurement of the muon anomalous magnetic moment (-2) and electric dipole moment (EDM) with a reaccelerated thermal muon beam. An H source driven by an ultraviolet light has been developed for the muon acceleration experiment. Prior to the acceleration experiment, a beamline commissioning was performed using this H beam, since the accelerated muon intensity is very low. We successfully measured the magnetic rigidity, which is essential for identifying the accelerated muons. This H source is capable of utilizing as a general-purpose beam source for other beamline.
Yeom, Y. S.*; Han, M. C.*; Choi, C.*; Han, H.*; Shin, B.*; Furuta, Takuya; Kim, C. H.*
Health Physics, 116(5), p.664 - 676, 2019/05
Times Cited Count:10 Percentile:66.45(Environmental Sciences)Recently, Task Group 103 of the ICRP developed the mesh-type reference computational phantoms (MCRPs), which are planned for use in future ICRP dose coefficient calculation. Performance of major Monte Carlo particle transport codes (Geant4, MCNP6, and PHITS) were tested with MCRP. External and internal exposure of various particles and energies were calculated and the computational times and required memories were compared. Additionally calculation for voxel-mesh phantom was also conducted so that the influence of different mesh-representation in each code was studied. Memory usage of MRCP was as large as 10 GB with Geant4 and MCNP6 while it is much less with PHITS (1.2 GB). In addition, the computational time required for MRCP tends to increase compared to voxel-mesh phantoms with Geant4 and MCNP6 while it is equal or tends to decrease with PHITS.
Zhang, Y.*; Guo, H.*; Kim, S. B.*; Wu, Y.*; Ostojich, D.*; Park, S. H.*; Wang, X.*; Weng, Z.*; Li, R.*; Bandodkar, A. J.*; et al.
Lab on a Chip, 19(9), p.1545 - 1555, 2019/05
Times Cited Count:168 Percentile:99.72(Biochemical Research Methods)This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of creatinine and urea in sweat, across physiologically relevant ranges. The results allow for routine, non-pharmacological capture of sweat across patient populations, such as infants and the elderly, that cannot be expected to sweat through exercise, and they create potential opportunities in the use of sweat for kidney disease screening/monitoring.
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:13 Percentile:98.66(Quantum Science & Technology)Dioguardi, A. P.*; Yasuoka, Hiroshi*; Thomas, S. M.*; Sakai, Hironori; Cary, S. K.*; Kozimor, S. A.*; Albrecht-Schmitt, T. E.*; Choi, H. C.*; Zhu, J.-X.*; Thompson, J. D.*; et al.
Physical Review B, 99(3), p.035104_1 - 035104_6, 2019/01
Times Cited Count:9 Percentile:42.15(Materials Science, Multidisciplinary)We present a detailed nuclear magnetic resonance (NMR) study of Pu in bulk and powdered single-crystal plutonium tetraboride (PuB), which has recently been investigated as a potential correlated topological insulator. The Pu NMR spectra are consistent with axial symmetry of the shift tensor showing for the first time that Pu NMR can be observed in an anisotropic environment and up to room temperature. The temperature dependence of the Pu shift, combined with a relatively long spin-lattice relaxation time (), indicate that PuB adopts a nonmagnetic state with gaplike behavior consistent with our density functional theory calculations. The temperature dependencies of the NMR Knight shift and imply bulk gaplike behavior confirming that PuB is a good candidate topological insulator.
Bandodkar, A. J.*; Gutruf, P.*; Choi, J.*; Lee, K.-H.*; Sekine, Yurina; Reeder, J. T.*; Jeang, W. J.*; Aranyosi, A. J.*; Lee, S. P.*; Model, J. B.*; et al.
Science Advances (Internet), 5(1), p.eaav3294_1 - eaav3294_15, 2019/01
Times Cited Count:501 Percentile:99.88(Multidisciplinary Sciences)Interest in advanced wearable technologies increasingly extends beyond systems for biophysical measurements to those that enable continuous, non-invasive monitoring of biochemical markers in biofluids. Here, we introduce battery-free, wireless microelectronic platforms that perform sensing via schemes inspired by the operation of biofuel cells. Combining these systems in a magnetically releasable manner with chrono-sampling microfluidic networks that incorporate assays based on colorimetric sensing yields thin, flexible, lightweight, skin-interfaced technologies with broad functionality in sweat analysis. A demonstration device allows simultaneous monitoring of sweat rate/loss, along with quantitative measurements of pH and of lactate, glucose and chloride concentrations using biofuel cell and colorimetric approaches.
Kim, S. B.*; Lee, K.-H.*; Raj, M. S.*; Reeder, J. T.*; Koo, J.*; Hourlier-Fargette, A.*; Bandodkar, A. J.*; Won, S. M.*; Sekine, Yurina; Choi, J.*; et al.
Small, 14(45), p.1802876_1 - 1802876_9, 2018/11
Times Cited Count:86 Percentile:93.72(Chemistry, Multidisciplinary)Excretion of sweat from eccrine glands is a dynamic physiological process that varies with body position, activity level, and health status. Information content embodied in sweat rate and chemistry can be used to assess health status and athletic performance. This paper presents a thin, miniaturized, skin-interfaced microfluidic technology that includes a reusable, battery-free electronics module for measuring sweat conductivity and rate in real-time using wireless power from and data communication with capabilities in near field communications (NFC). Systematic studies of these combined microfluidic/electronic systems, accurate correlations of measurements performed with them to those of laboratory standard instrumentation, and field tests on human subjects establish the key operational features and their utility in sweat analytics.
Otani, Masashi*; Sue, Yuki*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Iijima, Toru*; et al.
Journal of Physics; Conference Series, 1067(5), p.052012_1 - 052012_7, 2018/09
Times Cited Count:1 Percentile:46.03(Physics, Particles & Fields)We have measured the muon beam profile after acceleration using a radio frequency quadrupole linac (RFQ). Positive muons are injected to an aluminum degrader and negative muoniums (Mu) are generated. The generated Mus are extracted by an electrostatic lens and accelerated to 89 keV by the RFQ. The accelerated Mus are transported to a beam profile monitor (BPM) through a quadrupole magnet pair and a bending magnet. The BPM consists of a micro-channel plate, a phospher screen, and a CCD camera. Measured profile in the vertical direction is consistent to the simulation. This profile measurement is one of milestones for realizing a muon linac for measurement of the muon anomalous magnetic moment at the Japan Proton Accelerator Research Complex.
Sekine, Yurina; Kim, S. B.*; Zhang, Y.*; Bandodkar, A. J.*; Xu, S.*; Choi, J.*; Irie, Masahiro*; Ray, T. R.*; Kohli, P.*; Kozai, Naofumi; et al.
Lab on a Chip, 18(15), p.2178 - 2186, 2018/08
The rich composition of solutes and metabolites in sweat and its relative ease of collection upon excretion from skin pores make this class of biofluid an attractive candidate for point of care analysis. Here, we present a complementary approach that exploits fluorometric sensing modalities integrated into a soft, skin-interfaced microfluidic system which, when paired with a simple smartphone-based imaging module, allows for in-situ measurement of important biomarkers in sweat. A network array of microchannels and a collection of microreservoirs pre-filled with fluorescent probes that selectively react with target analytes in sweat (e.g. probes), enable quantitative, rapid analysis. Field studies on human subjects demonstrate the ability to measure the concentrations of chloride, sodium and zinc in sweat, with accuracy that matches that of conventional laboratory techniques.
Kim, B.*; Bae, S.*; Choi, H.*; Choi, S.*; Kawamura, Naritoshi*; Kitamura, Ryo*; Ko, H. S.*; Kondo, Yasuhiro; Mibe, Tsutomu*; Otani, Masashi*; et al.
Nuclear Instruments and Methods in Physics Research A, 899, p.22 - 27, 2018/08
Times Cited Count:7 Percentile:54.85(Instruments & Instrumentation)A beam profile monitor (BPM) based on a microchannel plate has been developed for muon beams with low transverse momentum for the measurement of the muon anomalous magnetic moment and electric dipole moment at high precision, with capability of diagnosing muon beams of kinetic energy range from a few keV to 4 MeV. The performance of the BPM has been evaluated using a surface muon beam at J-PARC and additionally with an ultraviolet (UV) light source. It has been confirmed that the BPM has a dynamic range from a few to 10 muons per bunch without saturation. The spatial resolution of the BPM has been estimated to be less than 0.30 mm. The positron background from muon decays is an obstacle in muon beam profile monitoring and a partial discrimination of the positrons has been achieved under discrete particle conditions.
Kitamura, Ryo*; Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Yamazaki, Takayuki*; Kondo, Yasuhiro; Hasegawa, Kazuo; et al.
Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.239 - 243, 2018/08
Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world's first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.
Bae, S.*; Choi, H.*; Choi, S.*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; et al.
Physical Review Accelerators and Beams (Internet), 21(5), p.050101_1 - 050101_6, 2018/05
Times Cited Count:16 Percentile:77.16(Physics, Nuclear)Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu), which are bound states of positive muons and two electrons, are generated from through the electron capture process in an aluminum degrader. The generated Mu's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu's are accelerated to 89 keV. The accelerated Mu's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.
Kim, S. B.*; Zhang, Y.*; Won, S. M.*; Bandodkar, A. J.*; Sekine, Yurina; Xue, Y.*; Koo, J.*; Harshman, S. W.*; Martin, J. A.*; Park, J. M.*; et al.
Small, 14(12), p.1703334_1 - 1703334_11, 2018/03
Times Cited Count:117 Percentile:96.17(Chemistry, Multidisciplinary)Kitamura, Ryo*; Otani, Masashi*; Kondo, Yasuhiro; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iinuma, Hiromi*; Ishida, Katsuhiko*; et al.
Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.100 - 103, 2017/12
Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world's first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.