Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 53

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Systematic approach for the adequacy analysis of a set of experimental databases: Application in the framework of the ATRIUM activity

Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.

Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05

JAEA Reports

Standard guideline for the seismic response analysis method using three-dimensional finite element model of reactor buildings (Contract research) (Translated document)

Choi, B.; Nishida, Akemi; Kawata, Manabu; Shiomi, Tadahiko; Li, Y.

JAEA-Research 2024-001, 206 Pages, 2024/03

JAEA-Research-2024-001.pdf:9.12MB

In the assessment of seismic safety and the design of building structures in nuclear facilities, lumped mass models have been used as standard methods. Recent advances in computer capabilities allow the use of three-dimensional finite element (3D FE) models to account for the 3D behavior of buildings, material nonlinearity, and the nonlinear soil-structure interaction effect. While 3D analysis method has many advantages, it is necessary to ensure its reliability as a new approach. The International Atomic Energy Agency performed an international benchmark study using the 3D FE analysis model for reactor building of Unit 7 at TEPCO's Kashiwazaki-Kariwa Nuclear Power Station based on recordings from the Niigataken Chuetsu-oki Earthquake in 2007. Multiple organizations from different countries participated in this study and the variation in their analytical results was significant, indicating an urgent need to improve the reliability of the analytical results by standardization of the analytical methods using 3D FE models. Additionally, it has been pointed out that it is necessary to understand the 3D behavior in the seismic fragility assessment of buildings and equipment, using realistic seismic response analysis method based on 3D FE models. In view of these considerations, a guideline for the seismic response analysis method using a 3D FE model was developed by incorporating the latest knowledge and findings in this area. The purpose of the guideline is to improve the reliability of the seismic response analysis method using 3D FE model of reactor buildings. The guideline consists of a main body, commentaries, and appendixes. The standard procedures, recommendations, key points to note, and technological bases for conducting seismic response analysis on reactor buildings using 3D FE models are provided in the guideline. In addition, the guideline will be revised reflecting the latest knowledge.

Journal Articles

Analytical study for low ground contact ratio of buildings due to the basemat uplift using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Shiomi, Tadahiko; Kawata, Manabu; Li, Y.; Ota, Akira*; Sonobe, Hideaki*; Ino, Susumu*; Ugata, Takeshi*

Mechanical Engineering Journal (Internet), 10(4), p.23-00026_1 - 23-00026_11, 2023/08

In the seismic evaluation of nuclear facility buildings, basemat uplift-the phenomenon during which the bottom of the basemat of a building partially rises from the ground owing to overturning moments during earthquakes-is a very important aspect because it affects not only structural strength and integrity, but also the response of equipment installed in the building. However, there are not enough analytical studies on the behavior of buildings with a low ground contact ratio due to basemat uplift during earthquakes. In this study, we conducted a simulation using a three-dimensional finite element model from past experiments on basemat uplift; further, we confirmed the validity of this approach. In order to confirm the difference in the analytical results depending on the analysis code, the simulation was performed under the same analytical conditions using the three analysis codes, which are E-FrontISTR, FINAS/STAR and TDAPIII, and the obtained analysis results were compared. Accordingly, we investigated the influence of the difference in adhesion on the structural response at low ground contact ratio. In addition, we confirmed the effects of significant analysis parameters on the structural response via sensitivity analysis. In this paper, we report the analytical results and insights obtained from these investigations.

Journal Articles

Construction of large-scale observation system for improvement of three-dimensional seismic analysis method for nuclear buildings

Nishida, Akemi; Kawata, Manabu; Choi, B.; Iigaki, Kazuhiko; Shiomi, Tadahiko; Li, Y.

Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 10 Pages, 2023/04

Our research and development are aimed at improving the accuracy of the three-dimensional seismic evaluation analysis method for nuclear buildings, which contributes to the probabilistic risk assessment caused by earthquakes (seismic PRA), using actual seismic observation records in collaboration with the Nuclear Regulation Authority since 2019. In this study, we constructed a large-scale observation system that enabled simultaneous measurements at multiple positions during earthquakes or against artificial waves. The accelerometers of the observation system were installed on/in the soil, floors, and on the walls of the nuclear building. This paper presents an outline of the large-scale observation system and the findings obtained from the analysis of the seismic observation records acquired using the system.

Journal Articles

Uncertainty quantification of seismic response of nuclear reactor building using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Li, Y.; Takada, Tsuyoshi

Earthquake Engineering and Resilience (Internet), 1(4), p.427 - 439, 2022/12

no abstracts in English

Journal Articles

Analytical study for low ground contact ratio of buildings due to the basemat uplift using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Shiomi, Tadahiko; Kawata, Manabu; Li, Y.

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 6 Pages, 2022/08

In the seismic evaluation of nuclear facility buildings, basemat uplift-the phenomenon during which the bottom of the basemat of a building partially rises from the ground owing to overturning moments during earthquakes-is a very important aspect because it affects not only structural strength and integrity, but also the response of equipment installed in the building. However, there are not enough analytical studies on the behavior of buildings with a low ground contact ratio due to basemat uplift during earthquakes. In this study, we conducted a simulation using a three-dimensional finite element model from past experiments on basemat uplift; further, we confirmed the validity of this approach. In order to confirm the difference in the analytical results depending on the analysis code, the simulation was performed under the same analytical conditions using the three analysis codes, which are E-FrontISTR, FINAS/STAR and TDAPIII, and the obtained analysis results were compared. Accordingly, we investigated the influence of the difference in adhesion on the structural response at low ground contact ratio. In addition, we confirmed the effects of significant analysis parameters on the structural response via sensitivity analysis. In this paper, we report the analytical results and insights obtained from these investigations.

Journal Articles

Identification of the reactor building damage mode for seismic fragility assessment using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Shiomi, Tadahiko; Kawata, Manabu; Li, Y.

Transactions of 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 10 Pages, 2022/07

In order to improve the seismic probabilistic risk assessment method, the authors are developing methods related to realistic response, realistic resistance and fragility assessment for buildings and equipment that are important for seismic safety. In this study, in order to identify of building damage mode subjected to large seismic motions, pushover analyses using multiple analysis codes were performed using a 3D FE model of a reactor building. We obtained the analysis results for the identification of local damage mode that contributes to the fragility assessment. In this paper, we report the progress of local damage mode and ultimate strength of the building by the pushover analysis. We also compared this result with the seismic response analysis results.

Journal Articles

A Study on the improvement of accuracy of three-dimensional seismic evaluation analysis method for nuclear buildings using a large-scale observation system

Nishida, Akemi; Kawata, Manabu; Choi, B.; Iigaki, Kazuhiko; Li, Y.

Transactions of 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 10 Pages, 2022/07

We have conducted research and development with the aim of improving the accuracy of three-dimensional seismic evaluation analysis method for nuclear buildings that contributes to probabilistic risk assessment caused by earthquakes (seismic PRA). In 2019, we started our research on improving the accuracy and validating the three-dimensional seismic analysis method used for nuclear buildings using actual seismic observation records in collaboration with the Nuclear Regulation Authority. In this research, we constructed a large-scale observation system that enabled simultaneous observation at multiple positions during natural earthquakes or artificial waves by installing accelerometers not only on/in the soil and on the floors of the building but also on the walls of the building, targeting the High Temperature engineering Test Reactor, which is one of nuclear facilities of JAEA. In this paper, we report the outline of the large-scale observation system and the knowledge obtained from the analysis results of the seismic observation records acquired using this system.

JAEA Reports

Standard guideline for the seismic response analysis method using 3D finite element model of reactor buildings (Contract research)

Choi, B.; Nishida, Akemi; Kawata, Manabu; Shiomi, Tadahiko; Li, Y.

JAEA-Research 2021-017, 174 Pages, 2022/03

JAEA-Research-2021-017.pdf:9.33MB

Standard methods such as lumped mass models have been used in the assessment of seismic safety and the design of building structures in nuclear facilities. Recent advances in computer capabilities allow the use of three-dimensional finite element (3D FE) models to account for the 3D behavior of buildings, material nonlinearity, and the nonlinear soil-structure interaction effect. Since the 3D FE model enables more complex and high-level treatment than ever before, it is necessary to ensure the reliability of the analytical results generated by the 3D FE model. Guidelines for assuring the dependability of modeling techniques and the treatment of nonlinear aspects of material properties have already been created and technical certifications have been awarded in domains other than nuclear engineering. The International Atomic Energy Agency performed an international benchmark study in nuclear engineering. Multiple organizations reported on the results of seismic response studies using the 3D FE model based on recordings from the Niigata-ken Chuetsuoki Earthquake in 2007. The variation in their analytical results was significant, indicating an urgent need to improve the reliability of the analytical results by standardization of the analytical methods using 3D FE models. Additionally, it has been pointed out that it is necessary to understand the 3D behavior in the seismic fragility assessment of buildings and equipment, which requires evaluating the realistic nonlinear behavior of building facilities when assessing their seismic fragility. In view of these considerations, a standard guideline for the seismic response analysis method using a 3D FE model was produced by incorporating the latest knowledge and findings in this area. The purpose of the guideline is to improve the reliability of the seismic response analysis method using 3D FE model of reactor buildings. The guideline consists of a main body, commentaries, and appendixes; it also provides standard procedures

Journal Articles

Assessment of seismic fragility using a three-dimensional structural model of a reactor building

Nishida, Akemi; Choi, B.; Shiomi, Tadahiko; Kawata, Manabu; Li, Y.

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 10 Pages, 2021/08

The new regulatory requirements in Japan have strengthened the mitigation of damage caused by natural disasters, such as earthquakes, and the operational guide for safety improvement evaluation recommends the probabilistic risk assessment (PRA) as the evaluation method in Japan. In the PRA of an earthquake, also known as the seismic PRA, the realistic assessment of the structural seismic response and the damage probability (fragility) assessment using the realistic response assessment of the nuclear buildings and equipment is one of the most important issues. Accordingly, the authors have conducted this study on the realistic seismic response analysis methods and seismic fragility assessment methods to ensure the seismic safety of the nuclear buildings and equipment. In this study, a nonlinear seismic response analysis is conducted for input ground motions beyond the ground motions assumed in the design by using a three-dimensional (3D) structural model of a reactor building. In addition, the damage mode of the structural components of the reactor building associated with the equipment is identified, and the seismic fragility is assessed based on the 3D behavior of the reactor building. The local response and detailed damage process of the reactor building that have been obtained through seismic response analysis, are reported in this study, along with the results of the seismic fragility assessment.

Journal Articles

Outline of guideline for seismic response analysis method using 3D finite element model of reactor building

Choi, B.; Nishida, Akemi; Shiomi, Tadahiko; Kawata, Manabu; Li, Y.

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 7 Pages, 2021/08

In the seismic safety assessment of building structures in nuclear facilities, lumped mass models are conventionally used. However, they cannot possess the required high-accuracy evaluation of nuclear facilities, such as the local response at the equipment location in a reactor building. In this point of view, a seismic response analysis method using a three-dimensional finite element (3D FE) model is indispensable. Although, it has been reported that the analysis results obtained using 3D FE models vary greatly depending on the experience and knowledge of analysts, the quality of analysis results should be insured by developing a standard analysis method. In the Japan Atomic Energy Agency, we have developed a guideline for seismic response analysis methods that adopt 3D FE models of reactor buildings. The guideline consists of a main body, commentary, and several supplements; it also includes procedures, recommendations, points of attention, and a technical basis for conducting seismic response analysis using 3D FE models of reactor buildings. In this paper, the outline of the guideline and analysis examples based on the guideline are presented.

Journal Articles

The Working group on the analysis and management of accidents (WGAMA); A Historical review of major contributions

Herranz, L. E.*; Jacquemain, D.*; Nitheanandan, T.*; Sandberg, N.*; Barr$'e$, F.*; Bechta, S.*; Choi, K.-Y.*; D'Auria, F.*; Lee, R.*; Nakamura, Hideo

Progress in Nuclear Energy, 127, p.103432_1 - 103432_14, 2020/09

 Times Cited Count:3 Percentile:11.26(Nuclear Science & Technology)

Journal Articles

Stacking fault energy analyses of additively manufactured stainless steel 316L and CrCoNi medium entropy alloy using in situ neutron diffraction

Woo, W.*; Jeong, J.-S.*; Kim, D.-K.*; Lee, C. M.*; Choi, S.-H.*; Suh, J.-Y.*; Lee, S. Y.*; Harjo, S.; Kawasaki, Takuro

Scientific Reports (Internet), 10(1), p.1350_1 - 1350_15, 2020/01

 Times Cited Count:62 Percentile:94.45(Multidisciplinary Sciences)

Journal Articles

Computation speeds and memory requirements of mesh-type ICRP reference computational phantoms in Geant4, MCNP6, and PHITS

Yeom, Y. S.*; Han, M. C.*; Choi, C.*; Han, H.*; Shin, B.*; Furuta, Takuya; Kim, C. H.*

Health Physics, 116(5), p.664 - 676, 2019/05

 Times Cited Count:7 Percentile:61.94(Environmental Sciences)

Recently, Task Group 103 of the ICRP developed the mesh-type reference computational phantoms (MCRPs), which are planned for use in future ICRP dose coefficient calculation. Performance of major Monte Carlo particle transport codes (Geant4, MCNP6, and PHITS) were tested with MCRP. External and internal exposure of various particles and energies were calculated and the computational times and required memories were compared. Additionally calculation for voxel-mesh phantom was also conducted so that the influence of different mesh-representation in each code was studied. Memory usage of MRCP was as large as 10 GB with Geant4 and MCNP6 while it is much less with PHITS (1.2 GB). In addition, the computational time required for MRCP tends to increase compared to voxel-mesh phantoms with Geant4 and MCNP6 while it is equal or tends to decrease with PHITS.

Journal Articles

Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system

Zhang, Y.*; Guo, H.*; Kim, S. B.*; Wu, Y.*; Ostojich, D.*; Park, S. H.*; Wang, X.*; Weng, Z.*; Li, R.*; Bandodkar, A. J.*; et al.

Lab on a Chip, 19(9), p.1545 - 1555, 2019/05

 Times Cited Count:139 Percentile:99.63(Biochemical Research Methods)

This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of creatinine and urea in sweat, across physiologically relevant ranges. The results allow for routine, non-pharmacological capture of sweat across patient populations, such as infants and the elderly, that cannot be expected to sweat through exercise, and they create potential opportunities in the use of sweat for kidney disease screening/monitoring.

Journal Articles

Soft, skin-interfaced microfluidic systems with wireless, battery-free electronics for digital, real-time tracking of sweat loss and electrolyte composition

Kim, S. B.*; Lee, K.-H.*; Raj, M. S.*; Reeder, J. T.*; Koo, J.*; Hourlier-Fargette, A.*; Bandodkar, A. J.*; Won, S. M.*; Sekine, Yurina; Choi, J.*; et al.

Small, 14(45), p.1802876_1 - 1802876_9, 2018/11

 Times Cited Count:78 Percentile:94.01(Chemistry, Multidisciplinary)

Excretion of sweat from eccrine glands is a dynamic physiological process that varies with body position, activity level, and health status. Information content embodied in sweat rate and chemistry can be used to assess health status and athletic performance. This paper presents a thin, miniaturized, skin-interfaced microfluidic technology that includes a reusable, battery-free electronics module for measuring sweat conductivity and rate in real-time using wireless power from and data communication with capabilities in near field communications (NFC). Systematic studies of these combined microfluidic/electronic systems, accurate correlations of measurements performed with them to those of laboratory standard instrumentation, and field tests on human subjects establish the key operational features and their utility in sweat analytics.

Journal Articles

A Fluorometric skin-interfaced microfluidic device and smartphone imaging module for ${{it in situ}}$ quantitative analysis of sweat chemistry

Sekine, Yurina; Kim, S. B.*; Zhang, Y.*; Bandodkar, A. J.*; Xu, S.*; Choi, J.*; Irie, Masahiro*; Ray, T. R.*; Kohli, P.*; Kozai, Naofumi; et al.

Lab on a Chip, 18(15), p.2178 - 2186, 2018/08

The rich composition of solutes and metabolites in sweat and its relative ease of collection upon excretion from skin pores make this class of biofluid an attractive candidate for point of care analysis. Here, we present a complementary approach that exploits fluorometric sensing modalities integrated into a soft, skin-interfaced microfluidic system which, when paired with a simple smartphone-based imaging module, allows for in-situ measurement of important biomarkers in sweat. A network array of microchannels and a collection of microreservoirs pre-filled with fluorescent probes that selectively react with target analytes in sweat (e.g. probes), enable quantitative, rapid analysis. Field studies on human subjects demonstrate the ability to measure the concentrations of chloride, sodium and zinc in sweat, with accuracy that matches that of conventional laboratory techniques.

Journal Articles

Epistemic Uncertainty Quantification of Floor Responses for a Nuclear Reactor Building

Choi, B.; Nishida, Akemi; Li, Y.; Muramatsu, Ken*; Takada, Tsuyoshi*

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 9 Pages, 2018/07

After the 2011 Fukushima accident, nuclear power plants are required to take countermeasures against accidents beyond design basis conditions. In seismic probabilistic risk assessment (SPRA), uncertainty can be classified as either aleatory uncertainty, which cannot be reduced, or epistemic uncertainty, which can be reduced with additional knowledge and/or information. To improve the reliability of SPRA, efforts should be made to identify and reduce the epistemic uncertainty caused by the lack of knowledge. In this study, we focused on the difference in seismic response by modeling methods, which is related epistemic uncertainty. We conducted a seismic response analysis with two kinds of modeling methods; a three-dimensional finite-element model and a conventional sway-rocking stick model, by using simulated various input ground motions, which is related to aleatory uncertainty. And then we quantified the seismic floor response results of the various input ground motions of each modeling methods. For the uncertainty quantification related to different modeling methods, we further perform a statistical analysis of the floor response results of the nuclear reactor building. Finally, we discussed how to utilize the results from these calculations for the quantification of uncertainty in fragility analysis for SPRA.

Journal Articles

Super-absorbent polymer valves and colorimetric chemistries for time-sequenced discrete sampling and chloride analysis of sweat via skin-mounted soft microfluidics

Kim, S. B.*; Zhang, Y.*; Won, S. M.*; Bandodkar, A. J.*; Sekine, Yurina; Xue, Y.*; Koo, J.*; Harshman, S. W.*; Martin, J. A.*; Park, J. M.*; et al.

Small, 14(12), p.1703334_1 - 1703334_11, 2018/03

 Times Cited Count:98 Percentile:95.52(Chemistry, Multidisciplinary)

Journal Articles

EBR-II passive safety demonstration tests benchmark analyses; Phase 2

Briggs, L.*; Monti, S.*; Hu, W.*; Sui, D.*; Su, G. H.*; Maas, L.*; Vezzoni, B.*; Partha Sarathy, U.*; Del Nevo, A.*; Petruzzi, A.*; et al.

Proceedings of 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16) (USB Flash Drive), p.3030 - 3043, 2015/08

The International Atomic Energy Agency Coordinated Research Project, "Benchmark Analyses of an EBR-II Shutdown Heat Removal Test" is in the third year of its four-year term. Nineteen participants representing eleven countries have simulated two of the most severe transients performed during the Shutdown Heat Removal Tests program conducted at Argonne's Experimental Breeder Reactor II. Benchmark specifications were created for these two transients, enabling project participants to develop computer models of the core and primary heat transport system, and simulate both transients. In phase 1 of the project, blind simulations were performed and then evaluated against recorded data. During phase 2, participants have refined their models to address areas where the phase 1 simulations did not predict as well as desired the experimental data. This paper describes the progress that has been made to date in phase 2 in improving on the earlier simulations and presents the direction of planned work for the remainder of the project.

53 (Records 1-20 displayed on this page)