Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The 2008 public release of the international multi-tokamak confinement profile database

Roach, C. M.*; Walters, M.*; Budny, R. V.*; Imbeaux, F.*; Fredian, T. W.*; Greenwald, M.*; Stillerman, J. A.*; Alexander, D. A.*; Carlsson, J.*; Cary, J. R.*; et al.

Nuclear Fusion, 48(12), p.125001_1 - 125001_19, 2008/12

 Times Cited Count:35 Percentile:28.57(Physics, Fluids & Plasmas)

This paper documents the public release PR08 of the International Tokamak Physics Activity profile database, which should be of particular interest to the magnetic confinement fusion community. Data from a wide variety of interesting discharges from many of the world's leading tokamak experiments are now made available in PR08, which also includes predictive simulations of an initial set of operating scenarios for ITER. In this paper we describe the discharges that have been included and the tools that are available to the reader who is interested in accessing and working with the data.

Journal Articles

Overview of physics basis for ITER

Mukhovatov, V.*; Shimada, Michiya; Chudnovskiy, A. N.*; Costley, A. E.*; Gribov, Y.*; Federici, G.*; Kardaun, O. J. F.*; Kukushkin, A. S.*; Polevoi, A. R.*; Pustovitov, V. D.*; et al.

Plasma Physics and Controlled Fusion, 45(12), p.235 - 252, 2003/12

 Times Cited Count:55 Percentile:82.78(Physics, Fluids & Plasmas)

ITER will be the first magnetic confinement device with burning DT plasma and fusion power of about 0.5 GW. During the past few years, new results have been obtained that substantiate the confidence in achieving Q $$>$$ 10 in ITER with inductive H-mode operation. These include achievement of a good H-mode confinement near the Greenwald density at high triangularity of the plasma cross section; improvements in theory-based confinement projections for the core plasma; improvement in helium ash removal due to the elastic collisions of He atoms with D/T ions in the divertor predicted by modelling; demonstration of feedback control of NTMs and resultant improvement in the achievable beta-values; better understanding of ELM physics and development of ELM mitigation techniques; and demonstration of mitigation of plasma disruptions. ITER will have a flexibility to operate also in steady state and intermediate (hybrid) regimes. The paper concentrates on inductively driven plasma performance and discusses requirements for steady-state operation in ITER.

2 (Records 1-2 displayed on this page)
  • 1