Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Iimura, Shun*; Rosenbusch, M.*; Takamine, Aiko*; Tsunoda, Yusuke*; Wada, Michiharu*; Chen, S.*; Hou, D. S.*; Xian, W.*; Ishiyama, Hironobu*; Yan, S.*; et al.
Physical Review Letters, 130(1), p.012501_1 - 012501_6, 2023/01
Maurer, C.*; Galmarini, S.*; Solazzo, E.*; Kumierczyk-Michulec, J.*; Bar
, J.*; Kalinowski, M.*; Schoeppner, M.*; Bourgouin, P.*; Crawford, A.*; Stein, A.*; et al.
Journal of Environmental Radioactivity, 255, p.106968_1 - 106968_27, 2022/12
Times Cited Count:0 Percentile:0(Environmental Sciences)After performing multi-model exercises in 2015 and 2016, a comprehensive Xe-133 atmospheric transport modeling challenge was organized in 2019. For evaluation measured samples for the same time frame were gathered from four International Monitoring System stations located in Europe and North America with overall considerable influence of IRE and/or CNL emissions. As a lesion learnt from the 2nd ATM-Challenge participants were prompted to work with controlled and harmonized model set ups to make runs more comparable, but also to increase diversity. Effects of transport errors, not properly characterized remaining emitters and long IMS sampling times (12 to 24 hours) undoubtedly interfere with the effect of high-quality IRE and CNL stack data. An ensemble based on a few arbitrary submissions is good enough to forecast the Xe-133 background at the stations investigated. The effective ensemble size is below five.
Carter, L. M.*; Crawford, T. M.*; Sato, Tatsuhiko; Furuta, Takuya; Choi, C.*; Kim, C. H.*; Brown, J. L.*; Bolch, W. E.*; Zanzonico, P. B.*; Lewis, J. S.*
Journal of Nuclear Medicine, 60(12), p.1802 - 1811, 2019/12
Times Cited Count:14 Percentile:74.85(Radiology, Nuclear Medicine & Medical Imaging)Voxel human phantoms have been used for internal dose assessment. More anatomically accurate representation become possible for skins or layer tissues owing to recent developments of advanced polygonal mesh-type phantoms and thus internal dose assessment using those advanced phantoms are desired. However, the Monte Carlo transport calculation by implementing those phantoms require an advanced knowledge for the Monte Carlo transport codes and it is only limited to experts. We therefore developed a tool, PARaDIM, which enables users to conduct internal dose calculation with PHITS easily by themselves. With this tool, a user can select tetrahedral-mesh phantoms, set radionuclides in organs, and execute radiation transport calculation with PHITS. Several test cases of internal dosimetry calculations were presented and usefulness of this tool was demonstrated.
Abromeit, B.*; Tripathi, V.*; Crawford, H. L.*; Liddick, S. N.*; Yoshida, Sota*; Utsuno, Yutaka; Bender, P. C.*; Crider, B. P.*; Dungan, R.*; Fallon, P.*; et al.
Physical Review C, 100(1), p.014323_1 - 014323_14, 2019/07
Times Cited Count:1 Percentile:15.15(Physics, Nuclear)no abstracts in English
Murray, I.*; MacCormick, M.*; Bazin, D.*; Doornenbal, P.*; Aoi, Nori*; Baba, Hidetada*; Crawford, H. L.*; Fallon, P.*; Li, K.*; Lee, J.*; et al.
Physical Review C, 99(1), p.011302_1 - 011302_7, 2019/01
Times Cited Count:14 Percentile:86.06(Physics, Nuclear)no abstracts in English
Maurer, C.*; Bar, J.*; Kusmierczyk-Michulec, J.*; Crawford, A.*; Eslinger, P. W.*; Seibert, P.*; Orr, B.*; Philipp, A.*; Ross, O.*; Generoso, S.*; et al.
Journal of Environmental Radioactivity, 192, p.667 - 686, 2018/12
Times Cited Count:20 Percentile:63.49(Environmental Sciences)It is very important to understand the impact for CTBT stations caused by radioxenon emitted from medical isotope production facilities for detection of underground nuclear tests. Predictions of the impact on six CTBT radionuclide stations in the Southern Hemisphere of radioxenon emitted from the medical isotope production facility in Australia were carried out by participants from ten nations using ATM (Atmospheric Transport Modeling) based on the emission data of radioxenon from this facility, as part of study on impact of radioxenon emitted from medical isotope production facilities on CTBT radionuclide stations.
Kim, S. B.*; Zhang, Y.*; Won, S. M.*; Bandodkar, A. J.*; Sekine, Yurina; Xue, Y.*; Koo, J.*; Harshman, S. W.*; Martin, J. A.*; Park, J. M.*; et al.
Small, 14(12), p.1703334_1 - 1703334_11, 2018/03
Times Cited Count:80 Percentile:95.46(Chemistry, Multidisciplinary)Tripathi, V.*; Lubna, R. S.*; Abromeit, B.*; Crawford, H. L.*; Liddick, S. N.*; Utsuno, Yutaka; Bender, P. C.*; Crider, B. P.*; Dungan, R.*; Fallon, P.*; et al.
Physical Review C, 95(2), p.024308_1 - 024308_7, 2017/02
Times Cited Count:7 Percentile:54.95(Physics, Nuclear)no abstracts in English
Chiara, C. J.*; Weisshaar, D.*; Janssens, R. V. F.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Harker, J. L.*; Walters, W. B.*; Recchia, F.*; Albers, M.*; Alcorta, M.*; et al.
Physical Review C, 91(4), p.044309_1 - 044309_10, 2015/04
Times Cited Count:35 Percentile:91.51(Physics, Nuclear)The neutron-rich isotope Ni was produced by multi-nucleon transfer reactions of
Zn in the Argonne National Laboratory, and an in-beam
-ray experiment were performed using the GRETINA array. The
and
levels of
Ni were observed for the first time. Those levels are regarded as large deformed states associated with proton excitation from the
orbit because they cannot be reproduced by a shell-model calculation assuming a small valence space without
. A theoretical analysis based on the Monte Carlo shell model published in 2014 indicates that those levels corresponds to a prolate deformed band. The present result demonstrates the occurrence of shape coexistence in neutron-rich Ni isotopes other than a known case of
Ni, and confirms the predictive power of the Monte Carlo shell-model calculation.
Minamisono, Kei*; Mantica, P. F.*; Crawford, H. L.*; Pinter, J. S.*; Stoker, J. B.*; Utsuno, Yutaka; Weerasiri, R. R.*
Physics Letters B, 662(5), p.389 - 395, 2008/05
Times Cited Count:4 Percentile:34.51(Astronomy & Astrophysics)no abstracts in English
Thiessen, K. M.*; Sazykina, T. G.*; Apostoaei, A. I.*; Balonov, M. I.*; Crawford, J.*; Domel, R.*; Fesenko, S.*; Filistovic, V.*; Galeriu, D.*; Homma, Toshimitsu; et al.
Journal of Environmental Radioactivity, 84(2), p.225 - 244, 2005/00
Times Cited Count:6 Percentile:15.37(Environmental Sciences)Data collected following the Chernobyl accident in 1986 have provided a unique opportunity to test the reliability of computer models for contamination of terrestrial and aquatic environments. The Iput River scenario was used by the Dose Reconstruction Working Group of BIOMASS. The test area was one of the most highly contaminated areas in Russia following the accident, with an average contamination density of Cs of 800, 000 Bq m
and localized contamination up to 1,500,000 Bq m
, and a variety of countermeasures that were implemented in the test area had to be considered in the modelling exercise. Difficulties encountered during the exercise included averaging of data to account for uneven contamination of the test area, simulating the downward migration and decrease in bioavailability of
Cs in soil, and modelling the effectiveness of countermeasures. The accuracy of model predictions is dependent at least in part on the experience and judgment of the participant in interpretation of input information, selection of parameter values, and treatment of uncertainties.
Thiessen, K. M.*; Sazykina, T. G.*; Apostoaei, A. I.*; Balonov, M.*; Crawford, J.*; Domel, R.*; Fesenko, S.*; Filistovic, V.*; Galeriu, D.*; Homma, Toshimitsu; et al.
Proceedings from the International Conference on Radioactivity in the Environment, p.317 - 320, 2002/09
no abstracts in English
Iimura, Hideki; Schuessler, H. A.*; Buchinger, F.*; Cocolios, T.*; Crawford, J. E.*; Gulick, S.*; Lee, J. K. P.*; Levy, C. D. P.*; Pearson, M.*; Lioubimov, V.*; et al.
no journal, ,
We report measurements of the hyperfine structure constants of La (N=74) as an initial step to further exploring the neutron deficient rare-earth region where a sudden onset of nuclear deformation is predicted theoretically around N=74. This work is an extension of our earlier off-line experiments on
La to on-line laser spectroscopy. The radioactive isotope
La (T
=59 min) was produced by means of a spallation reaction using a proton beam from TRIUMF cyclotron. The hyperfine spectra were observed by using the method of collinear fast-beam laser spectroscopy. From the obtained hyperfine constants, the nuclear moments of
La were derived. In order to arrive at an understanding of the nuclear structure of
La, we have carried out particle triaxial-rotor calculations. The results from the calculation reproduce well the experimental values when a triaxial shape is assumed for
La.
Iimura, Hideki; Buchinger, F.*; Crawford, J. E.*; Gulick, S.*; Cocolios, T. E.*; Colomenski, A.*; Fahes, M.*; Schuessler, H. A.*
no journal, ,
no abstracts in English