Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:2 Percentile:37.82(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in HoFe on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Shen, X.*; Sun, Haomin; Deng, B.*; Hibiki, Takashi*; Nakamura, Hideo
International Journal of Heat and Fluid Flow, 67(Part A), p.168 - 184, 2017/10
Times Cited Count:17 Percentile:61.61(Thermodynamics)An experimental study on upward bubbly air-water flows in a vertical large-diameter square duct have been performed by mainly using four-sensor probes. Local measurements of interfacial area concentration (IAC), void fraction, 3D bubble velocity vector and bubble diameter at 3 axial positions were conducted. Although the interfacial area transport equation (IATE) and its bubble coalescence and breakup models have already played an important role in predicting the IAC in general two-phase flow fields, they are mainly developed based on the two-phase flow experimental data taken in round pipes or small diameter channels. To confirm their usability in large-diameter square duct, this study has evaluated the 1D one-group IATE with its 6 sets of bubble coalescence and breakup models with the presently-obtained database. It was found the relative error between the best prediction and the database was 25%.
Shen, X.*; Sun, Haomin; Deng, B.*; Hibiki, Takashi*; Nakamura, Hideo
Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 14 Pages, 2017/09
An experimental study on the upward bubbly air-water flows in a vertical large-diameter square duct have been performed by using four-sensor probes. The four-sensor probe were applied in the local measurements at 3 axial positions along the flow direction to obtain interfacial area concentration, 3-D bubble velocity vector and bubble diameter. The obtained void fraction, interfacial area concentration, 3-D bubble velocity vector and bubble diameter provided valuable insight into the flow structure and will serve as a valuable database to develop the mechanistic models for interfacial area transport equation sources and sinks.
Shen, X.*; Sun, Haomin; Deng, B.*; Hibiki, Takashi*; Nakamura, Hideo
Progress in Nuclear Energy, 89, p.140 - 158, 2016/05
Times Cited Count:24 Percentile:89.96(Nuclear Science & Technology)An experimental study was performed on the local structure of upward air-water two-phase flow in a vertical large diameter square duct by using a four-sensor probe. The four-sensor probe method classifying spherical and non-spherical bubbles was applied as a key measurement way to obtain local parameters such as 3-D bubble velocity vector, bubble diameter and interfacial area concentration. Both the local void fraction and interfacial area concentration indicated radial core-peak and wall-peak distributions at low and high liquid flow rates respectively. The 2 components of the bubble velocity vector in the cross-section revealed that there exists a rotating secondary flow in the octant symmetric triangular area and the magnitude of the rotating secondary flow increases with the liquid flow rate. Some of constitutive correlations of drift-flux model and interfacial area concentration are reviewed to study their predictabilities against the present data.
Deng, Z.*; Zhao, K.*; Gu, B.; Han, W.*; Zhu, J. L.*; Wang, X. C.*; Li, X.*; Liu, Q. Q.*; Yu, R. C.*; Goko, Tatsuo*; et al.
Physical Review B, 88(8), p.081203_1 - 081203_5, 2013/08
Times Cited Count:74 Percentile:91.69(Materials Science, Multidisciplinary)Deng, Z.*; Jin, C. Q.*; Liu, Q. Q.*; Wang, X. C.*; Zhu, J. L.*; Feng, S. M.*; Chen, L. C.*; Yu, R. C.*; Arguello, C.*; Goko, Tatsuo*; et al.
Nature Communications (Internet), 2, p.1425_1 - 1425_5, 2011/08
Times Cited Count:166 Percentile:93.63(Multidisciplinary Sciences)In a prototypical ferromagnet (Ga,Mn)As based on a III-V semiconductor, substitution of divalent Mn atoms into trivalent Ga sites leads to severely limited chemical solubility and metastable specimens available only as thin films. The doping of hole carriers via (Ga,Mn) substitution also prohibits electron doping. To overcome these difficulties, Masek et al. theoretically proposed systems based on a I-II-V semiconductor LiZnAs, where isovalent (Zn,Mn) substitution is decoupled from carrier doping with excess/deficient Li concentrations. Here we show successful synthesis of Li(ZnMn)As in bulk materials. We reported that ferromagnetism with a critical temperature of up to 50 K is observed in nominally Li-excess compounds, which have p-type carriers.
Deng, B.*; Sueoka, Shigeru
no journal, ,
We are attempting to reveal uplift and denudation history of the Micangshan, eastern margin of the Tibetan Plateau, by using apatite fission-track and (U-Th)/He thermochronology. The thermochronological ages were generally younger to the south, but had no clear correlation with elevation. Considering tilting uplift of the Micangshan resulted by wedge-thrust folding, we applied a tilted topography model to interpret the thermochronological data. We estimated ca 4 degrees of tilting to the south and 0.03-0.05 mm/yr of denudation rate since Late Cretaceous.