Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 118

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Validation of the fast reactor plant dynamics analysis code Super-COPD using FFTF loss of flow without scram test #13

Hamase, Erina; Ohgama, Kazuya; Kawamura, Takumi*; Doda, Norihiro; Tanaka, Masaaki; Yamano, Hidemasa

Annals of Nuclear Energy, 195, p.110157_1 - 110157_14, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To validate the fast reactor plant dynamics analysis code Super-COPD for the loss of flow without scram (LOFWOS) event, we participated in the IAEA benchmark for the LOFWOS test No.13 performed at the FFTF as one of the passive safety demonstration test. In the blind phase, there were challenges to reproduce outlet temperatures of fuel assemblies and the total reactivity. To improve the evaluation accuracy of them, the whole core model considering the radial heat transfer and interwrapper flow and the simplified assembly bowing reactivity model were introduced. As a result of the final phase, the second peak of outlet temperatures was reproduced successfully, and the total reactivity could generally follow the measured data. Super-COPD was validated for the LOFWOS event.

Journal Articles

Numerical simulation technologies for safety evaluation in plant lifecycle optimization method, ARKADIA for advanced reactors

Uchibori, Akihiro; Doda, Norihiro; Aoyagi, Mitsuhiro; Sonehara, Masateru; Sogabe, Joji; Okano, Yasushi; Takata, Takashi*; Tanaka, Masaaki; Enuma, Yasuhiro; Wakai, Takashi; et al.

Nuclear Engineering and Design, 413, p.112492_1 - 112492_10, 2023/11

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

The ARKAIDA has been developed to realize automatic optimization of plant design from safety evaluation for the advanced reactors represented by a sodium-cooled fast reactor. ARKADIA-Design offers functions to support design optimization both in normal operating conditions and design basis events. The multi-level simulation approach by the coupled analysis such as neutronics, core deformation, core thermal hydraulics was developed as one of the main technologies. On the other hand, ARKAIDA-Safety aims for safety evaluation considering severe accidents. As a key technology, the numerical methods for in- and ex-vessel coupled phenomena during severe accidents in sodium-cooled fast reactors were tested through a hypothetical severe accident event. Improvement of the ex-vessel model and development of the AI technology to find best design solution have been started.

Journal Articles

Development of a statistical evaluation method for core hot spot temperature in sodium-cooled fast reactor under natural circulation conditions

Doda, Norihiro; Igawa, Kenichi*; Iwasaki, Takashi*; Murakami, Satoshi*; Tanaka, Masaaki

Nuclear Engineering and Design, 410, p.112377_1 - 112377_15, 2023/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To enhance the safety of sodium-cooled fast reactors, the decay heat in the core must be removed by natural circulation even if the AC power supply to the forced circulation equipment is lost. Under natural circulation conditions, sodium flow is driven by buoyancy, and flow velocity and temperature distribution influence each other. Thus, it is difficult to evaluate the core hot spot temperature by deterministically considering the uncertainties affecting flow and heat. In this study, a statistical evaluation method is developed for the core hot spot temperature by using Monte Carlo sampling methods. The applicability of the core hotspot evaluation method was confirmed in three representative events during natural circulation decay heat removal operations in loop-type sodium-cooled fast reactors.

Journal Articles

Validation practices of multi-physics core performance analysis in an advanced reactor design study

Doda, Norihiro; Kato, Shinya; Hamase, Erina; Kuwagaki, Kazuki; Kikuchi, Norihiro; Ohgama, Kazuya; Yoshimura, Kazuo; Yoshikawa, Ryuji; Yokoyama, Kenji; Uwaba, Tomoyuki; et al.

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.946 - 959, 2023/08

An innovative design system named ARKADIA is being developed to realize the design of advanced nuclear reactors as safe, economical, and sustainable carbon-free energy sources. This paper focuses on ARKADIA-Design for design studies as a part of ARKADIA and introduces representative verification methods for numerical analysis methods of the core design. ARKADIA-Design performs core performance analysis of sodium-cooled fast reactors using a multiphysics approach that combines neutronics, thermal-hydraulics, core mechanics, and fuel pin behavior analysis codes. To confirm the validity of these analysis codes, validation matrices are identified with reference to experimental data and reliable numerical analysis results. The analysis models in these codes and the representative practices for the validation matrices are described.

Journal Articles

Development of a design optimization framework for sodium-cooled fast reactors, 2; Development of optimization analysis control function

Doda, Norihiro; Nakamine, Yoshiaki*; Kuwagaki, Kazuki; Hamase, Erina; Kikuchi, Norihiro; Yoshimura, Kazuo; Matsushita, Kentaro; Tanaka, Masaaki

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 28, 5 Pages, 2023/05

As a part of the development of the "Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle (ARKADIA)" to automatically optimize the life cycle of innovative nuclear reactors including fast reactors, ARKADIA-design is being developed to support the optimization of fast reactor in the conceptual design stage. ARKADIA-Design consists of three systems (Virtual plant Life System (VLS), Evaluation assistance and Application System (EAS), and Knowledge Management System (KMS)). A design optimization framework controls the connection between the three systems through the interfaces in each system. This paper reports on the development of an optimization analysis control function that performs design optimization analysis combining plant behavior analysis by VLS and optimization study by EAS.

Journal Articles

Investigation of optimization process for core design with integrated analysis between neutronics and plant dynamics

Hamase, Erina; Kuwagaki, Kazuki; Doda, Norihiro; Yokoyama, Kenji; Tanaka, Masaaki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

To innovate a core design process, an optimization process for the core design has been developed as a part of the design optimization support tool named ARKADIA-Design. The core design optimization process is integrated by the core design analysis of neutronics, thermal-hydraulics, and fuel integrity and plant dynamics analysis with the Bayesian optimization (BO) algorithm. The optimization problem for design parameters with high core performance and inherent safety in ULOF event was solved by the integrated analysis between the neutronics and plant dynamics with the BO in a primary loop system including a core consisting of two-dimensional RZ cylindrical geometry. It was indicated that the optimization process could obtain an optimal solution.

Journal Articles

Validation of feedback reactivity evaluation models for plant dynamics analysis code during unprotected loss of heat sink event in sodium-cooled fast reactors

Yoshimura, Kazuo; Doda, Norihiro; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Journal of Nuclear Engineering and Radiation Science, 9(2), p.021601_1 - 021601_9, 2023/04

Feedback reactivity automatically caused by radial expansion of the core is known as one of the inherent safety features in a sodium-cooled fast reactor (SFR). In order to validate the evaluation models of the reactivity feedback equipped in the in-house plant dynamics analysis code named Super-COPD, the benchmark analyses for the unprotected loss of heat sink (ULOHS) tests of BOP-302R and BOP-301 in an experimental SFR, EBR-II were conducted and the applicability of the evaluation method for the reactivity feedback was indicated during the ULOHS even, by comparing the numerical results and the experimental data.

Journal Articles

Inherent core safety performance of small sodium-cooled fast reactor with oxide fuel

Takano, Kazuya; Oki, Shigeo; Doda, Norihiro; Chikazawa, Yoshitaka; Maeda, Seiichiro

Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 7 Pages, 2023/04

The MOX fueled SMR-SFRs with lower linear heat rating of 100 W/cm and 50 W/cm, whereas the linear heat rating at rated power is around 400 W/cm in general, were designed to decrease the fuel temperature during its rated power state in order to pursue the inherent core safety for MOX fueled SMR-SFRs. The transient analyses for Anticipated Transient Without Scram (ATWS) events represented by an Unprotected Loss of Flow (ULOF) accident on the lower linear heat rating cores were performed considering their inherent feedback reactivity. Through the transient analysis, the inherent core safety performances for the lower linear heat rating cores were discussed based on the evaluated maximum coolant temperature and Cumulative Damage Fraction (CDF) as criteria to maintain the core and fuel integrity. The feasible design window for MOX fueled SMR-SFRs with the inherent core safety focusing on the linear heat rating was identified based on the transient analysis results.

Journal Articles

Probabilistic risk assessment for sodium-cooled fast reactors by the CMMC method; Consideration of operator's recognition probability for accident managements

Koike, Akari*; Nemoto, Masaya*; Nakashima, Risako*; Sakai, Takaaki*; Doda, Norihiro; Tanaka, Masaaki

Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 2 Pages, 2023/04

To evaluate the effect of the operator's recognition of the accident management (AM) necessity on plant safety, the operator's recognition of the AM necessity was modeled as a function of time-dependent success probability, and dynamic PRA analyses were performed for a sodium-cooled fast reactor during abnormal snowfall. The analysis results showed that the operator's recognition of the snowfall can avoid the core damage at an earlier stage after the accident.

Journal Articles

Verification of fuel assembly bowing analysis model for core deformation reactivity evaluation

Doda, Norihiro; Uwaba, Tomoyuki; Ohgama, Kazuya; Yoshimura, Kazuo; Nemoto, Toshiyuki*; Tanaka, Masaaki; Yamano, Hidemasa

Nihon Kikai Gakkai Kanto Shibu Dai-29-Ki Sokai, Koenkai Koen Rombunshu (Internet), 5 Pages, 2023/03

An evaluation method for reactivity feedback due to core deformation during reactor power increase in sodium-cooled fast reactors is being developed for realistic core design evaluation. In this evaluation method, fuel assembly bowing was modeled with a beam element of the finite element method, and the assembly's pad contact between adjacent assemblies was modeled with a dedicated element which could consider the wrapper tube cross-sectional distortion and the pad stiffness depending on pad contact conditions. This fuel assembly bowing analysis model was verified for thermal bowing of a single assembly and assembly pad contact between adjacent assemblies in a core as past benchmark problems. The calculation results by this model showed good agreement with those of reference solutions of theoretical solutions or results by participating institutions in the benchmark. This study confirmed that the analysis model was able to calculate thermal assembly bowing appropriately.

Journal Articles

Benchmark analysis of FFTF Loss of Flow Without Scram Test No.13 using fast reactor plant dynamics analysis code Super-COPD

Hamase, Erina; Ohgama, Kazuya; Kawamura, Takumi*; Doda, Norihiro; Yamano, Hidemasa; Tanaka, Masaaki

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 9 Pages, 2022/10

To improve the prediction accuracy of the plant dynamics analysis code named Super-COPD, JAEA has joined the IAEA benchmark for the FFTF Loss of Flow Without Scram Test No.13. In the first blind phase, there was the challenge to perform outlet temperatures of fuel assemblies more accurately. Hence, the renewed analysis was performed with the whole core multi-channel model in which each assembly was modelled to simulate the radial heat transfer among assemblies and the flow redistribution induced by the buoyancy in the NC conditions. Then, to validate the coupled transient analysis between the whole core multi-channel model and the one-point kinetics model, the analysis considering major reactivity feedbacks such as GEM, assembly bowing was performed. As a result, the second peak of outlet temperatures was reproduced successfully, and it was observed that the plant dynamics analysis could follow the measured data.

Journal Articles

Development of evaluation method for core deformation reactivity in sodium-cooled fast reactor; Verification of core deformation reactivity evaluation based on first-order perturbation theory

Doda, Norihiro; Kato, Shinya; Iida, Masaki*; Yokoyama, Kenji; Tanaka, Masaaki

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 8 Pages, 2022/10

In the conventional core design in sodium-cooled fast reactors (SFRs), negative reactivity feedback due to core deformation was neglected because of large uncertainty in analytical evaluation. To optimize core design, it is necessary to develop an analytical evaluation method and eliminate excessive conservativeness. An evaluation method for core deformation reactivity has been developed by coupling analysis of neutronics, thermal-hydraulics, and structural mechanics. For the verification study of the neutronics calculation method, the reactivity was calculated for the deformed core geometry in which the fuel assembly (FA) moved horizontally in the radial direction for each row from the core center. Compared to reference values derived from Monte Carlo calculations, the calculated reactivity due to FA displacement agreed well in the core region and was overestimated in the reflector region. The modification challenges in development of the core deformation model were identified.

Journal Articles

Risk assessment of a sodium-cooled fast reactor for abnormal snowfall with considering global warming

Koike, Akari*; Nakashima, Risako*; Nemoto, Masaya*; Sakai, Takaaki*; Doda, Norihiro; Tanaka, Masaaki

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 4 Pages, 2022/10

Due to global warming, the amount of snowfall in abnormal snowfall events may increase in the future. In order to evaluate the effect of global warming on the probability of exceeding the limit temperature at the core outlet as a core damage factor in a sodium-cooled fast reactor, a hazard curve of snowfall was developed considering global warming, and a dynamic PRA was performed. As a result, it was found that the amount of snowfall in abnormal snowfall events increases due to global warming, and the probability of exceeding the limit temperature increases.

Journal Articles

Development of reactor vessel thermal-hydraulic analysis method in natural circulation conditions with coarse-mesh subchannel CFD model

Hamase, Erina; Miyake, Yasuhiro*; Imai, Yasutomo*; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki

Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 12 Pages, 2022/09

To enhance the safety of sodium-cooled fast reactors, the natural circulation (NC) decay heat removal systems with a dipped-type direct heat exchanger (D-DHX) have been investigated. During the D-DHX operation, since the core-plenum interaction occurs, development of the reactor vessel model including the more model by using a computational fluid dynamics code (RV-CFD) is required. Previously, the CFD model based on the subchannel analysis was developed. In this study, to achieve much lower computational cost maintaining the prediction accuracy, the coarse-mesh subchannel CFD (CMSC) model has been developed and was incorporated into the core of RV-CFD. As a result of PLANDTL-1 test analysis, the RV-CFD with the CMSC model can reproduce the radial heat transfer under NC conditions.

Journal Articles

Development of ARKADIA-Design for design optimization support; Application of coupling method using multi-level simulation technique for plant thermal-hydraulics analysis

Doda, Norihiro; Yoshimura, Kazuo; Hamase, Erina; Yokoyama, Kenji; Uwaba, Tomoyuki; Tanaka, Masaaki

Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 3 Pages, 2022/09

ARKADIA-Design is being developed to support the optimization of sodium-cooled fast reactors in the conceptual design stage. Design optimization requires various types of numerical analysis: 1-D plant dynamics analysis for efficient evaluation of various design options and multi-dimensional analysis for a detailed evaluation of local phenomena, including multi-physics. For those analyses, ARKADIA-Design performs whole plant analyses based on the multi-level simulation (MLS) technique in which the analysis codes are coupled to simulate the phenomena in an intended degree of resolution. This paper describes an outline of the coupling analysis methods in the MLS of the ARKADIA-Design and the numerical simulations of the experimental fast breeder reactor EBR-II tests by the coupled analysis.

Journal Articles

Development of plant lifecycle optimization method, ARKADIA for advanced reactors

Uchibori, Akihiro; Sogabe, Joji; Okano, Yasushi; Takata, Takashi*; Doda, Norihiro; Tanaka, Masaaki; Enuma, Yasuhiro; Wakai, Takashi; Asayama, Tai; Ohshima, Hiroyuki

Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 10 Pages, 2022/09

The ARKAIDA has been developed to realize automatic optimization of plant design from safety evaluation for the advanced reactors represented by a sodium-cooled fast reactor. ARKADIA-Design offers functions to support design optimization both in normal operating conditions and design basis events. The multi-level simulation approach by the coupled analysis such as neutronics, core deformation, core thermal hydraulics was developed as one of the main technologies of the ARKADIA-Design. On the other hand, ARKAIDA-Safety aims for safety evaluation considering severe accidents. As a key technology, the numerical methods for in- and ex-vessel coupled phenomena during severe accidents in sodium-cooled fast reactors were tested through a hypothetical severe accident event.

Journal Articles

Core thermal-hydraulics analysis during dipped-type direct heat exchanger operation in natural circulation conditions

Hamase, Erina; Miyake, Yasuhiro*; Imai, Yasutomo*; Doda, Norihiro; Ono, Ayako; Tanaka, Masaaki

Mechanical Engineering Journal (Internet), 9(4), p.21-00438_1 - 21-00438_15, 2022/08

To enhance the safety of sodium-cooled fast reactors, a dipped-type direct heat exchanger (D-DHX) has been investigated in a natural circulation decay heat removal system. During the D-DHX operation, the core-plenum interactions occurs and the thermal-hydraulics in the reactor vessel (RV) is complicated, the establishment of thermal-hydraulic analysis model in the RV for computational fluid dynamics code (RV-CFD) is required to simulate the thermal stratification in the upper plenum and thermal-hydraulics in the core. In this study, in terms of using RV-CFD for design study, the subchannel CFD model with low computational cost was adopted to the core of RV-CFD and the numerical simulation was carried out in comparison with the measured data in the sodium test facility named PLANDTL-1. As the result, the calculated sodium temperature in the core had good agreement with the experimental result and the applicability of the RV-CFD for the core-plenum interactions was confirmed.

Journal Articles

Application of 1D-CFD coupling method to unprotected loss of heat sink event in EBR-II focusing on thermal stratification in cold pool

Yoshimura, Kazuo; Doda, Norihiro; Fujisaki, Tatsuya*; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 10 Pages, 2022/08

To confirm the applicability of the reactivity model, the authors have been conducting the benchmark exercises of the unprotected loss of heat sink event tests in a pool-type experimental fast reactor EBR-II. In the blind phase in the benchmark analyses using the plant dynamics analysis (1D) code in which the cold pool was modeled by means of the perfect mixing volume, it was found the increase of the core inlet temperature was evaluated lower than that of the measured data and the feedback reactivity was underestimated, because the thermal stratification in the cold pool was ignored. Then, the detailed model of the cold pool for the computational fluid dynamics (CFD) code was introduced and the 1D-CFD codes coupling method was applied to the benchmark analyses. It was confirmed that both the thermal stratification in the cold pool and the increase of the core inlet temperature were successfully reproduced.

Journal Articles

Quantitative risk assessment with CMMC method on abnormal snowfall incident for a sodium-cooled fast reactor

Nakashima, Risako*; Koike, Akari*; Sakai, Takaaki*; Doda, Norihiro; Tanaka, Masaaki

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 6 Pages, 2022/08

In development of a quantitative risk assessment method to the external hazards for a sodium-cooled fast reactor, a dynamic PRA using the Continuous Markov chain Monte Carlo (CMMC) method was performed to evaluate the effect of global warming on the probability of exceeding the temperature limit as a core damage factor. There is a possibility that the amount of snowfall in abnormal snowfall events will increase due to global warming in the future. A hazard curve of snowfall considering global warming was developed. The results show that the probability of exceeding the temperature limit is increased by the abnormal snowfall events due to global warming.

Journal Articles

Development of ARKADIA for the innovation of advanced nuclear reactor design process (Overview of optimization process development in design optimization support tool, ARKADIA-Design)

Tanaka, Masaaki; Doda, Norihiro; Yokoyama, Kenji; Mori, Takero; Okajima, Satoshi; Hashidate, Ryuta; Yada, Hiroki; Oki, Shigeo; Miyazaki, Masashi; Takaya, Shigeru

Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2022/07

To assist conceptual studies of various reactor systems conducted by private sectors in nuclear power innovation, development of an innovative design system named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle) is undergoing to achieve the design of an advanced nuclear reactor as a safe, economic, and sustainable carbon-free energy source. In this paper, focusing on the ARKADIA-Design as a part of it, the progress in the development of optimization processes on the representative problems in the fields of the core design, the plant structure design, and the maintenance schedule planning are introduced.

118 (Records 1-20 displayed on this page)