Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hayakawa, Sho*; Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Aichi, Masaatsu*; Suzuki, Katsuyuki*
Journal of Materials Science, 54(17), p.11509 - 11525, 2019/09
Times Cited Count:17 Percentile:55.49(Materials Science, Multidisciplinary)Nakanishi, Daiki*; Kawabata, Tomoya*; Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Suzuki, Katsuyuki*
Philosophical Magazine, 98(33), p.3034 - 3047, 2018/09
Times Cited Count:10 Percentile:43.73(Materials Science, Multidisciplinary)By using the six sets of interatomic potentials for face-centredcubic metals that differ in the stacking fault energy (SFE) while most of the other material parameters are kept almost identical, we conducted molecular dynamics simulations to evaluate the effects of SFE on the defect formation process through collision cascades. The ratio of glissile SIA clusters tends to decrease with increasing SFE. This is because perfect loops, the edges of which split into two partial dislocations with stacking fault structures between them in most cases, prefer to form at lower SFEs. The enhanced formation of glissile SIA clusters at lower SFEs can also be observed even at increased temperature.
Doihara, Kohei*; Okita, Taira*; Itakura, Mitsuhiro; Aichi, Masaatsu*; Suzuki, Katsuyuki*
Philosophical Magazine, 98(22), p.2061 - 2076, 2018/05
Times Cited Count:22 Percentile:68.74(Materials Science, Multidisciplinary)In this study, molecular dynamics simulations were performed to elucidate the effects of stacking fault energy (SFE) on the physical interactions between an edge dislocation and a spherical void in the crystal structure of face-centred cubic metals at various temperatures and for different void sizes. Four different types of interaction morphologies were observed, in which (1) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the trailing partial; (2) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the leading partial; (3) the partial dislocations detached from the void almost simultaneously without jog formation; and (4) the partial dislocations detached from the void almost simultaneously with jog formation. With an increase in void size or SFE, the interaction morphology changed in the above-mentioned order. It was observed that the magnitude of the critical resolved shear stress (CRSS) and its dependence on the SFE were determined by these interaction morphologies. The value of the CRSS in the case of interaction morphology (1) is almost equal to an analytical one based on the linear elasticity by employing the Burgers vector of a single partial dislocation. The maximum value of the CRSS is also obtained by the analytical model with the Burgers vector of the two partial dislocations.