Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Crystalline fully carboxylated polyacetylene obtained under high pressure as a Li-ion battery anode material

Wang, X.*; Tang, X.*; Zhang, P.*; Wang, Y.*; Gao, D.*; Liu, J.*; Hui, K.*; Wang, Y.*; Dong, X.*; Hattori, Takanori; et al.

Journal of Physical Chemistry Letters (Internet), 12(50), p.12055 - 12061, 2021/12

 Times Cited Count:6 Percentile:44.89(Chemistry, Physical)

Substituted polyacetylene is expected to improve the chemical stability, physical properties, and additional functions of the polyacetylene backbones, but its diversity is very limited. Here, by applying external pressure on solid acetylenedicarboxylic acid, we report the first crystalline poly-dicarboxylacetylene with every carbon on the trans-polyacetylene backbone bonded to a carboxyl group, which is very hard to synthesize by traditional methods. This unique structure combines the extremely high content of carbonyl groups and high conductivity of a polyacetylene backbone, which exhibits a high specific capacity and excellent cycling/rate performance as a Li-ion battery (LIB) anode. We present a completely functionalized crystalline polyacetylene and provide a high-pressure solution for the synthesis of polymeric LIB materials and other polymeric materials with a high content of active groups.

Journal Articles

Phase transition and chemical reactivity of 1H-tetrazole under high pressure up to 100 GPa

Gao, D.*; Tang, X.*; Wang, X.*; Yang, X.*; Zhang, P.*; Che, G.*; Han, J.*; Hattori, Takanori; Wang, Y.*; Dong, X.*; et al.

Physical Chemistry Chemical Physics, 23(35), p.19503 - 19510, 2021/09

 Times Cited Count:4 Percentile:36.54(Chemistry, Physical)

Pressure-induced phase transition and polymerization of nitrogen-rich molecules are widely focused due to its extreme importance for the development of green high energy density materials. Here, we present a study of the phase transition and chemical reaction of 1H-tetrazole up to 100 GPa by using ${it in situ}$ Raman, IR, X-ray diffraction, neutron diffraction techniques and theoretical calculation. A phase transition above 2.6 GPa was identified and the high-pressure structure was determined with one molecule in a unit cell. The 1H-tetrazole polymerizes reversibly below 100 GPa, probably through a carbon-nitrogen bonding instead of nitrogen-nitrogen bonding. Our studies updated the structure model of the high pressure phase of 1H-tetrazole, and presented the possible intermolecular bonding route for the first time, which gives new insights to understand the phase transition and chemical reaction of nitrogen-rich compounds, and benefit for designing new high energy density materials.

Journal Articles

Distance-selected topochemical dehydro-diels-alder reaction of 1,4-Diphenylbutadiyne toward crystalline graphitic nanoribbons

Zhang, P.*; Tang, X.*; Wang, Y.*; Wang, X.*; Gao, D.*; Li, Y.*; Zheng, H.*; Wang, Y.*; Wang, X.*; Fu, R.*; et al.

Journal of the American Chemical Society, 142(41), p.17662 - 17669, 2020/10

 Times Cited Count:21 Percentile:74.59(Chemistry, Multidisciplinary)

Solid-state topochemical polymerization (SSTP) is a promising method to construct functional crystalline polymeric materials, but in contrast to various reactions that happen in solution, only very limited types of SSTP reactions are reported. Diels-Alder (DA) and dehydro-DA (DDA) reactions are textbook reactions for preparing six-membered rings in solution but are scarcely seen in solid-state synthesis. Here, using multiple cutting-edge techniques, we demonstrate that the solid 1,4-diphenylbutadiyne (DPB) undergoes a DDA reaction under 10-20 GPa with the phenyl as the dienophile. The crystal structure at the critical pressure shows that this reaction is "distance-selected". The distance of 3.2${AA}$ between the phenyl and the phenylethynyl facilitates the DDA reaction, while the distances for other DDA and 1,4-addition reactions are too large to allow the bonding. The obtained products are crystalline armchair graphitic nanoribbons, and hence our studies open a new route to construct the crystalline carbon materials with atomic-scale control.

Journal Articles

Pressure-induced Diels-Alder reactions in C$$_{6}$$H$$_{6}$$ - C$$_{6}$$F$$_{6}$$ cocrystal towards graphane structure

Wang, Y.*; Dong, X.*; Tang, X.*; Zheng, H.*; Li, K.*; Lin, X.*; Fang, L.*; Sun, G.*; Chen, X.*; Xie, L.*; et al.

Angewandte Chemie; International Edition, 58(5), p.1468 - 1473, 2019/01

 Times Cited Count:35 Percentile:80.07(Chemistry, Multidisciplinary)

Pressure-induced polymerization (PIP) of aromatics is a novel method to construct sp$$^{3}$$-carbon frameworks, and nanothreads with diamond-like structures were synthesized by compressing benzene and its derivatives. Here by compressing benzene-hexafluorobenzene cocrystal(CHCF), we identified H-F-substituted graphane with a layered structure in the PIP product. Based on the crystal structure determined from the in situ neutron diffraction and the intermediate products identified by the gas chromatography-mass spectrum, we found that at 20 GPa CHCF forms tilted columns with benzene and hexafluorobenzene stacked alternatively, which leads to a [4+2] polymer, and then transfers to short-range ordered hydrogenated-fluorinated graphane. The reaction process contains [4+2] Diels-Alder, retro-Diels-Alder, and 1-1' coupling, and the former is the key reaction in the PIP. Our studies confirmed the elemental reactions of the CHCF for the first time, which provides a novel insight into the PIP of aromatics.

Journal Articles

High-j proton alignments in $$^{101}$$Pd

Zhou, H. B.*; Zhou, X. H.*; Zhang, Y. H.*; Zheng, Y.*; Liu, M. L.*; Zhang, N. T.*; Chen, L.*; Wang, S. T.*; Li, G. S.*; Wang, H. X.*; et al.

European Physical Journal A, 47(9), p.107_1 - 107_7, 2011/09

 Times Cited Count:4 Percentile:32.8(Physics, Nuclear)

High-spin states in $$^{101}$$Pd have been investigated by means of in-beam $$gamma$$-ray spectroscopic techniques. The previously known $$d$$$$_{5/2}$$ and 1/2$$^-$$[550] bands were extended to higher spins. The band crossings observed experimentally are explained by the alignment of $$g$$$$_{9/2}$$ protons. The band properties in $$^{101}$$Pd are compared with those in the neighboring nuclei and are discussed within the framework of the cranked shell model.

Journal Articles

Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil

Chen, L.-M.; Kando, Masaki; Xu, M. H.*; Li, Y.-T.*; Koga, J. K.; Chen, M.*; Xu, H.*; Yuan, X.-H.*; Dong, Q. L.*; Sheng, Z. M.*; et al.

Physical Review Letters, 100(4), p.045004_1 - 045004_4, 2008/02

 Times Cited Count:93 Percentile:92.69(Physics, Multidisciplinary)

We observed the increase of the K-$$alpha$$ X-ray conversion efficiency (hK) produced by a 60 fs frequency doubled high contrast laser pulse focused on Cu foil, compared to the case of the fundamental laser pulse. hK shows a strong dependence on the nonlinearly skewed shape of the laser pulse. It reaches a maximum for a 100 fs negatively skewed pulse. The electron spectrum shaping contributes to the enhancement of hK. Simulations demonstrate that high contrast lasers are an effective tool for optimizing the X-ray emission, via the enhanced Vacuum Heating mechanism.

Journal Articles

O 2$$p$$ hole-assisted electronic processes in the Pr$$_{1-x}$$Sr$$_{x}$$MnO$$_{3}$$ (x=0.0, 0.3) system

Ibrahim, K.*; Qian, H. J.*; Wu, X.*; Abbas, M. I.*; Wang, J. O.*; Hong, C. H.*; Su, R.*; Zhong, J.*; Dong, Y. H.*; Wu, Z. Y.*; et al.

Physical Review B, 70(22), p.224433_1 - 224433_9, 2004/12

 Times Cited Count:29 Percentile:75.08(Materials Science, Multidisciplinary)

no abstracts in English

Oral presentation

Spatial and pulse shape dependence of K$$_alpha$$ source from high contrast fs laser plasmas in regime of Relativistic Engineering

Chen, L.-M.; Koga, J. K.; Kando, Masaki; Kotaki, Hideyuki; Nakajima, Kazuhisa; Bulanov, S. V.; Tajima, Toshiki; Xu, M. H.*; Li, Y.-T.*; Dong, Q. L.*; et al.

no journal, , 

Interaction of intense Ti: Sapphire laser with Cu foil targets has been studied by measuring hard X-ray generation. Hard X-ray spectroscopy and K$$_alpha$$ X-ray conversion efficiency ($$eta_K$$) from Cu plasma have been studied as a function of laser intensity via pulse duration scan (60 fs $$sim$$ 600 fs), laser pulse energy scan (60 mJ $$sim$$ 600 mJ) and target displacement scan from best focus. For intensity I $$>1times 10^{17}$$ W/cm$$^2$$, the Cu $$eta_K$$ keep on increasing to reach a maximum value of $$1times 10^{-4}$$ at an intensity $$I = 1times 10^{18}$$ W/cm$$^2$$. The focusing is varied widely to give a range of intensities from 10$$^{15}$$ W/cm$$^2 sim 10^{18}$$ W/cm$$^2$$. Comparing to a recent publication, two individual emission peaks are obtained, one is at best focal spot and the other is at larger target offset corresponding to $$sim 10^{15}$$ W/cm$$^2$$. Each peak is corresponding to different energy absorption mechanism. In addition, when we introduce slightly detuning of compressor gratings at the best focal condition, it shows $$eta_K$$ generated by negatively skewed 100 fs pulse width laser irradiation reach $$5times10^{-4}$$ and almost 7 times greater than the case of positively skewed pulse. Vacuum Heating is greatly stimulated in this case and preciously control of pre-plasma is the key factor in tuning control of X-ray emission in relativistic fs regime.

8 (Records 1-8 displayed on this page)
  • 1