Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fablet, L.*; Pdrot, M.*; Choueikani, F.*; Kieffer, I.*; Proux, O.*; Pierson-Wickmann, A.-C.*; Cagniart, V.*; Yomogida, Takumi; Marsac, R.*
Environmental Science; Nano, 12(5), p.2815 - 2827, 2025/05
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Nickel is an omnipresent trace element in the environment. Due to its high affinity for iron oxide nanoparticles, its elimination from soils and water by these nanoparticles represents an interesting strategy, specially by magnetites, which is naturally present in the environment. However, the interactions between Ni and magnetite are poorly understood, because of the difficulty to control the stoichiometry (Fe(II)-to-Fe(III) ratio) of magnetite. The behavior of Ni in the presence of magnetite nanoparticles with different stoichiometries, in aqueous solution and inert atmosphere, are probed by adsorption experiments and X-ray Absorption Spectroscopy. This study helps predicting the interactions between Ni and magnetite in environmental conditions, which can be used for the development of efficient remediation strategies.
Scaria, J.*; Pdrot, M.*; Fablet, L.*; Yomogida, Takumi; Nguyen, T. T.*; Sivry, Y.*; Catrouillet, C.*; Pradas del Real, A. E.*; Choueikani, F.*; Vantelon, D.*; et al.
Environmental Science & Technology, 59(11), p.5747 - 5755, 2025/03
Times Cited Count:1 Percentile:0.00(Engineering, Environmental)Understanding and predicting the interaction mechanisms between chromium and magnetite is of particular interest to elucidate the biogeochemical behavior of Cr in the environment and to develop optimal soil remediation and water treatment strategies. However, while the elimination of the most toxic form of (Cr(VI)) by its reduction to Cr(III) has widely been documented, elucidating the exact mechanism involved in Cr(III) sorption to magnetite has attracted less attention. This study examined the interaction of Cr(III) solution with 10 nm-sized magnetites, whose stoichiometries were carefully defined and preserved in anaerobic conditions. This study reveals the joint effects of pH and magnetite stoichiometry on Cr(III) sorption mechanism, and that Cr(III)-(hydr)oxide precipitation is not necessarily the driving process of Cr(III) elimination from solutions. These results will help predict the fate and transport of chromium, as well as developing magnetite-based chromium remediation processes.
Simonnet, M.; Barr, N.*; Drot, R.*; Le Naour, C.*; Sladkov, V.*; Delpech, S.*
Radiochimica Acta, 107(4), p.289 - 297, 2019/04
Times Cited Count:3 Percentile:25.69(Chemistry, Inorganic & Nuclear)