Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Primary radiation damage; A Review of current understanding and models

Nordlund, K.*; Zinkle, S. J.*; Sand, A. E.*; Granberg, F.*; Averback, R. S.*; Stoller, R. E.*; Suzudo, Tomoaki; Malerba, L.*; Banhart, F.*; Weber, W. J.*; et al.

Journal of Nuclear Materials, 512, p.450 - 479, 2018/12

 Times Cited Count:271 Percentile:99.52(Materials Science, Multidisciplinary)

Scientific understanding of any kind of radiation effects starts from the primary damage. We consider the extensive experimental and computer simulation studies that have been performed over the past several decades on what the nature of the primary damage is. We review both the production of crystallographic or topological defects in materials as well as radiation mixing, i.e. the process where atoms in perfect crystallographic positions exchange positions with other ones in non-defective positions. We also consider the recent effort to provide alternatives to the current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model for metals. We present in detail new complementary displacement production estimators ("athermal recombination corrected dpa": arc-dpa) and atomic mixing ("replacements per atom": rpa) functions that extend the NRT-dpa, and discuss their advantages and limitations.

Journal Articles

Improving atomic displacement and replacement calculations with physically realistic damage models

Nordlund, K.*; Zinkle, S. J.*; Sand, A. E.*; Granberg, F.*; Averback, R. S.*; Stoller, R.*; Suzudo, Tomoaki; Malerba, L.*; Banhart, F.*; Weber, W. J.*; et al.

Nature Communications (Internet), 9, p.1084_1 - 1084_8, 2018/03

 Times Cited Count:198 Percentile:98.86(Multidisciplinary Sciences)

Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only $$sim$$1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators.

Journal Articles

Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions

Marian, J.*; Becquart, C. S.*; Domain, C.*; Dudarev, S. L.*; Gilbert, M. R.*; Kurtz, R. J.*; Mason, D. R.*; Nordlund, K.*; Sand, A. E.*; Snead, L. L.*; et al.

Nuclear Fusion, 57(9), p.092008_1 - 092008_26, 2017/06

 Times Cited Count:101 Percentile:99.27(Physics, Fluids & Plasmas)

Under the anticipated operating conditions for demonstration magnetic fusion reactors beyond ITER, structural materials will be exposed to unprecedented conditions of irradiation, heat flux, and temperature. While such extreme environments remain inaccessible experimentally, computational modeling and simulation can provide qualitative and quantitative insights into materials response and complement the available experimental measurements. For plasma facing components such as the first wall and the divertor, tungsten (W) has been selected as the best candidate material due to its superior high-temperature and irradiation properties. In this paper we provide a review of recent efforts in computational modeling of W both as a plasma-facing material as well as a bulk structural material subjected to fast neutron irradiation. We highlight several of the most salient findings obtained via computational modeling and point out a number of remaining future challenges.

Journal Articles

Primary radiation damage in materials

Nordlund, K.*; Sand, A. E.*; Granberg, F.*; Zinkle, S. J.*; Stoller, R.*; Averback, R. S.*; Suzudo, Tomoaki; Malerba, L.*; Banhart, F.*; Weber, W. J.*; et al.

NEA/NSC/DOC(2015)9 (Internet), 86 Pages, 2015/00

Within this report, we review the current understanding of primary radiation damage from neutrons, ions and electrons with emphasis on the range of validity of the dpa concept in all main classes of materials, and in particular discuss known shortcomings. We recognise that the current NRT-dpa standard is fully valid in the sense of a scaled radiation exposure measure, as it is essentially proportional to the radiation energy deposited per volume. As such, it is highly recommended to be used in reporting neutron damage results to enable comparison between different nuclear reactor environments and ion irradiations. However, in the sense of a measure of damage production the NRT-dpa value has several well-known problems. We discuss this matter and propose an improved dpa definition.

4 (Records 1-4 displayed on this page)
  • 1