Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ftterer, M. A.*; Strydom, G.*; Sato, Hiroyuki; Li, F.*; Abonneau, E.*; Abram, T.*; Davies, M. W.*; Kim, M. H.*; Edwards, L.*; Muransky, O.*; et al.
Encyclopedia of Nuclear Energy, Vol.1, p.512 - 522, 2021/06
The HTR is a relatively simple Small Modular Reactor design featuring demonstrated robust passive and inherent safety. It responds to the needs of a very large and growing process heat market in most industrialized countries many of which pursue a stringent policy of reducing fossil fuel burn. The manuscript starts from historical developments. This article also highlights the most significant recent achievements of this technology internationally and explains its potential value in a modern energy economy beyond pure electricity generation. The article concludes with an outlook on work towards building demonstration plants, which are required to de-risk private investments and to incentivize deployment.
Ftterer, M. A.*; Li, F.*; Gougar, H.*; Edwards, L.*; Pouchon, M. A.*; Kim, M. H.*; Carr
, F.*; Sato, Hiroyuki
Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 12 Pages, 2018/10
This paper provides an update on the international effort in the development of the VHTR system pursued through international collaboration between 8 countries in the GIF and an outlook on future R&D. The versatility of the VHTR enables it to be designed with inherent safety characteristics and optimized for both electric and non-electric applications, in particular for cogeneration of heat and power. Recent highlights from the four currently active GIF VHTR R&D projects are provided and placed into the context of the related national programs. Based on VHTR's relatively high technology readiness level, orientations for future R&D are outlined and will contribute to further enhancing the system's market readiness level.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.
Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04
Times Cited Count:7 Percentile:46.42(Physics, Nuclear)Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to
collisions.