Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Search for elements 119 and 120

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review C, 102(6), p.064602_1 - 064602_9, 2020/12

 Times Cited Count:30 Percentile:97.86(Physics, Nuclear)

A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the $$^{50}$$Ti+$$^{249}$$Bk and $$^{50}$$Ti+$$^{249}$$Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA. Over four months of irradiation, neither was detected at cross-section sensitivity levels of 65 and 200 fb, respectively. The non-observation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical predictions on the fission-barrier heights of superheavy nuclei in the region of the island of stability.

Journal Articles

Fusion reaction $$^{48}$$Ca+$$^{249}$$Bk leading to formation of the element Ts (Z=117)

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review C, 99(5), p.054306_1 - 054306_16, 2019/05

AA2019-0039.pdf:5.03MB

 Times Cited Count:21 Percentile:90.76(Physics, Nuclear)

We have performed an experiment to synthesize the element 117 (Ts) with the $$^{48}$$Ca+$$^{249}$$Bk fusion reaction. Four $$alpha$$-decay chains attributed to the element 117 were observed. Two of them were long decay chains which can be assigned to the one originating from the $$alpha$$ decay of $$^{294}$$Ts. The other two were short decay chains which are consistent with the one originating from the $$alpha$$ decay of $$^{293}$$Ts. We have compared the present results with the literature data, and found that our present results mostly confirmed the literature data, leading to the firm confirmation of the synthesis of the element 117.

Journal Articles

$$^{48}$$Ca + $$^{249}$$Bk fusion reaction leading to element Z = 117; Long-lived $$alpha$$-decaying $$^{270}$$Db and discovery of $$^{266}$$Lr

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review Letters, 112(17), p.172501_1 - 172501_5, 2014/05

 Times Cited Count:201 Percentile:98.43(Physics, Multidisciplinary)

The superheavy element with atomic number 117 was produced in the $$^{48}$$Ca + $$^{249}$$Bk fusion reaction using the gas-filled recoil separator TASCA at GSI in Germany. This result verified the previous result of the discovery of new element 117 reported by Flerov Laboratory of Nuclear Reactions in Russia, which makes certain the synthesis and discovery of element 117 in human history. On the other hand, the last nucleus in the $$alpha$$ decay chain from the element 117 was assigned to be the unknown nucleus $$^{266}$$Lr instead of the previously reported $$^{270}$$Db, and $$^{270}$$Db was found to be the $$alpha$$-decaying nucleus with very long half-life.

Journal Articles

Integrated modelling of a JET type-I ELMy H-mode pulse and predictions for ITER-like wall scenarios

Wiesen, S.*; Brezinsek, S.*; J$"a$rvinen, A.*; Eich, T.*; Fundamenski, W.*; Huber, A.*; Parail, V.*; Corrigan, G.*; Hayashi, Nobuhiko; JET-EFDA Contributors*

Plasma Physics and Controlled Fusion, 53(12), p.124039_1 - 124039_12, 2011/12

 Times Cited Count:22 Percentile:67.65(Physics, Fluids & Plasmas)

Journal Articles

Comparison of the spatial and temporal structure of type-I ELMs

Kirk, A.*; Asakura, Nobuyuki; Boedo, J. A.*; Beurskens, M.*; Counsell, G. F.*; Eich, T.*; Fundamenski, W.*; Herrmann, A.*; Kamada, Yutaka; Leonard, A. W.*; et al.

Journal of Physics; Conference Series, 123, p.012011_1 - 012011_10, 2008/00

 Times Cited Count:22 Percentile:97.44

A comparison of the spatial and temporal evolution of the filamentary structures observed during type I ELMs is presented from a variety of diagnostics and machines. There is evidence that these filaments can be detected inside the LCFS prior to ELMs. The filaments do not have a circular cross section instead they are elongated in the perpendicular (poloidal) direction and this size appears to increase linearly with the minor radius of the machine. The filaments start rotating toroidally/poloidally with velocities close to that of the pedestal. This velocity then decreases as the filaments propagate radially. It is most likely that the filaments have at least their initial radial velocity when they are far out into the SOL. The dominant loss mechanism is through parallel transport and the transport to the wall is through the radial propagation of these filaments. Measurements of the filament energy content show that each filament contains up to 2.5 % of the energy released by the ELM.

Journal Articles

Edge localized modes; Recent experimental findings and related issues

Kamiya, Kensaku; Asakura, Nobuyuki; Boedo, J. A.*; Eich, T.*; Federici, G.*; Fenstermacher, M.*; Finken, K.*; Herrmann, A.*; Terry, J.*; Kirk, A.*; et al.

Plasma Physics and Controlled Fusion, 49(7), p.s43 - s62, 2007/07

 Times Cited Count:74 Percentile:91.87(Physics, Fluids & Plasmas)

Edge Localized Mode (ELM) measurements in the tokamaks, including JT-60U, DIII-D, ASDEX-U and JET, are reviewed. The followings are outlines of this presentation. (1) ELM Types and basic scaling, (2) Small ELM regimes and ELM mitigation, (3) ELM filament formation and transverse motion, (4) Power deposition on divertor targets and main chamber wall.

Journal Articles

Progress in the ITER physics basis, 4; Power and particle control

Loarte, A.*; Lipschultz, B.*; Kukushkin, A. S.*; Matthews, G. F.*; Stangeby, P. C.*; Asakura, Nobuyuki; Counsell, G. F.*; Federici, G.*; Kallenbach, A.*; Krieger, K.*; et al.

Nuclear Fusion, 47(6), p.S203 - S263, 2007/06

 Times Cited Count:827 Percentile:98.25(Physics, Fluids & Plasmas)

Progress, since the ITER Physics Basis publication (1999), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Significant progress in experiment area: energy and particle transport, the interaction of plasmas with the main chamber material elements, ELM energy deposition on material elements and the transport mechanism, the physics of plasma detachment and neutral dynamics, the erosion of low and high Z materials, their transport to the core plasma and their migration at the plasma edge, retention of tritium in fusion devices and removal methods. This progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma-materials interaction. The implications for the expected performance in ITER and the lifetime of the plasma facing materials are discussed.

Journal Articles

Edge pedestal physics and its implications for ITER

Kamada, Yutaka; Leonard, A. W.*; Bateman, G.*; Becoulet, M.*; Chang, C. S.*; Eich, T.*; Evans, T. E.*; Groebner, R. J.*; Guzdar, P. N.*; Horton, L. D.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

no abstracts in English

Journal Articles

Survey of type I ELM dynamics measurements

Leonard, A. W.*; Asakura, Nobuyuki; Boedo, J. A.*; Becoulet, M.*; Counsell, G. F.*; Eich, T.*; Fundamenski, W.*; Herrmann, A.*; Horton, L. D.*; Kamada, Yutaka; et al.

Plasma Physics and Controlled Fusion, 48(5A), p.A149 - A162, 2006/05

 Times Cited Count:40 Percentile:78.24(Physics, Fluids & Plasmas)

This report summarizes Type I edge localized mode (ELM) dynamics measurements from a number of tokamaks. Several transport mechanisms are conjectured to be responsible for ELM transport, including convective transport due to filamentary structures ejected from the pedestal, parallel transport due to edge ergodization or magnetic reconnection and turbulent transport driven by the high edge gradients when the radial electric field shear is suppressed. The experimental observations are assessed for their validation, or conflict, with these ELM transport conjectures.

Journal Articles

Edge localized mode physics and operational aspects in tokamaks

B$'e$coulet, M.*; Huysmans, G.*; Sarazin, Y.*; Garbet, X.*; Ghendrih, P.*; Rimini, F.*; Joffrin, E.*; Litaudon, X.*; Monier-Garbet, P.*; An$'e$, J.-M.*; et al.

Plasma Physics and Controlled Fusion, 45(12A), p.A93 - A113, 2003/12

 Times Cited Count:84 Percentile:91.26(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER

Loarte, A.*; Saibene, G.*; Sartori, R.*; Campbell, D.*; Becoulet, M.*; Horton, L.*; Eich, T.*; Herrmann, A.*; Matthews, G.*; Asakura, Nobuyuki; et al.

Plasma Physics and Controlled Fusion, 45(9), p.1549 - 1569, 2003/10

 Times Cited Count:441 Percentile:99.72(Physics, Fluids & Plasmas)

Analysis of Type I ELMs from ongoing experiments shows that ELM energy losses are correlated with the density and temperature of the pedestal plasma before the ELM crash. The Type I ELM plasma energy loss normalized to the pedestal energy is found to correlate across experiments with the collisionality of the pedestal plasma. Other parameters affect the ELM size such as the edge magnetic shear, etc, which influence the plasma volume affected by the ELMs. ELM particle losses are influenced by this ELM affected volume and are weakly dependent on other pedestal plasma parameters. In JET and DIII-D, minimum Type I ELMs with energy losses acceptable for ITER were found, that do not affect the plasma temperature. The duration of the divertor ELM power pulse is correlated with the typical ion transport time from the pedestal to the divertor target and not with the duration of the ELM associated MHD activity. Extrapolation of the present experimental results to ITER is summarized.

Journal Articles

ELM energy and particle losses and their extrapolation to burning plasma experiments

Loarte, A.*; Saibene, G.*; Sartori, R.*; Becoulet, M.*; Horton, L.*; Eich, T.*; Herrmann, A.*; Laux, M.*; Matthews, G.*; Jachmich, S.*; et al.

Journal of Nuclear Materials, 313-316, p.962 - 966, 2003/03

 Times Cited Count:111 Percentile:98.43(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Studies of ELM heat load, SOL flow and carbon erosion from existing Tokamak experiments, and projections for ITER

Asakura, Nobuyuki; Loarte, A.*; Porter, G.*; Philipps, V.*; Lipschultz, B.*; Kallenbach, A.*; Matthews, G.*; Federici, G.*; Kukushkin, A.*; Mahdavi, A.*; et al.

IAEA-CN-94/CT/P-01, 5 Pages, 2002/00

Three important physics issues for the ITER divertor design and operation are summarized based on the experimental and numerical work from multi-machine database (JET, JT-60U, ASDEX Upgrade, DIII-D, Alcator C-Mod and TEXTOR). (i) The energy load associated with Type-I ELMs is of great concern for the lifetime of the ITER divertor target. In order to understand the physics base of the scaling models, the ELM heat and particle transport to the divertor is investigated. Convective transport during ELMs plays an important role in heat transport to the divertor. (ii) Determination of the SOL flow pattern and the driving mechanism has progressed experimentally and numerically. Influences of the drift effects on the SOL and divertor plasma transport were discussed. (iii) Characteristics of chemical yield at two different deposited carbon surfaces, i.e. erosion- and redeposition-dominated areas, have been studied. Progress of understanding the chemical erosion is reviewed.

Oral presentation

Improving material properties and performance of nuclear targets for transmutation-relevant experiments

Vascon, A.; Wiehl, N.*; Runke, J.*; Drebert, J.*; Reich, T.*; Trautmann, N.*; Cremer, B.*; K$"o$gler, T.*; Beyer, R.*; Junghans, A.*; et al.

no journal, , 

Oral presentation

On the improvement of material properties and performance of nuclear targets

Vascon, A.; Wiehl, N.*; Runke, J.*; Drebert, J.*; Reich, T.*; Trautmann, N.*; Cremer, B.*; K$"o$gler, T.*; Beyer, R.*; Junghans, A. R.*; et al.

no journal, , 

15 (Records 1-15 displayed on this page)
  • 1