Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kato, Atsushi; Kubo, Shigenobu; Chikazawa, Yoshitaka; Miyagawa, Takayuki*; Uchita, Masato*; Suzuno, Tetsuji*; Endo, Junji*; Kubo, Koji*; Murakami, Hisatomo*; Uzawa, Masayuki*; et al.
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 11 Pages, 2022/04
The authors are carrying out conceptual design studies for a pool-type sodium-cooled fast reactor. There are main challenges such as measures against severe earthquake in Japan, thermal hydraulic in a reactor vessel (RV), a decay heat removal system design. When the JP-pool SFR of 650 MWe is installed in Japan, it shall be designed against the severe seismic conditions. Additionally, a newly three-dimensional seismic isolation system is under development.
Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.
Mechanical Engineering Journal (Internet), 7(3), p.19-00489_1 - 19-00489_16, 2020/06
The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.
Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05
The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.
Watanabe, Osamu*; Oyama, Kazuhiro*; Endo, Junji*; Doda, Norihiro; Ono, Ayako; Kamide, Hideki; Murakami, Takahiro*; Eguchi, Yuzuru*
Journal of Nuclear Science and Technology, 52(9), p.1102 - 1121, 2015/09
Times Cited Count:13 Percentile:71.17(Nuclear Science & Technology)A natural circulation (NC) evaluation methodology has been developed to ensure the safety of a sodium-cooled fast reactor (SFR) of 1500MW adopting the NC decay heat removal system (DHRS). The methodology consists of a 1D safety analysis which can evaluate the core hot spot temperature taking into account the temperature flattening effect in the core, a 3D fluid flow analysis which can evaluate the thermal-hydraulics for local convections and thermal stratifications in the primary system and DHRS, and a statistical safety evaluation method. The safety analysis method and the 3D analysis method have been validated using results of a 1/10 scaled water test simulating the primary system of the SFR and a 1/7 scaled sodium test simulating the primary system and the DHRS, and the applicability of the safety analysis for the SFR has been confirmed by comparing with the 3D analysis. Finally, a statistical safety evaluation has been performed for the SFR using the safety analysis method.
Sato, Isamu; Tanaka, Kosuke; Koyama, Shinichi; Matsushima, Kenichi*; Matsunaga, Junji*; Hirai, Mutsumi*; Endo, Hiroshi*; Haga, Kazuo*
Energy Procedia, 82, p.86 - 91, 2015/07
Times Cited Count:2 Percentile:16.69(Nuclear Science & Technology)Experiments simulating overheating conditions of fast reactor severe accidents have been previously carried out with irradiated fuels. For the present study, the chemical forms of the fission products (FPs) included in the irradiated fuels were evaluated by thermochemical equilibrium calculations. At temperatures of 2773 K and 2973 K, the most stable forms of Cs, I, Te, Sb, Pd and Ag are gaseous compounds. Cs and Sb detected in the thermal gradient tube (TGT) in the experiments can take gaseous chemical forms of elemental Cs, CsI, CsMoO, CsO and elemental Sb, SbO, SbTe, respectively. By comparing experimental results and the estimations, it is seen CsI thermochemically behaves in a manner that traps it in the TGT, while elemental Cs trends to move as fine particles. The moving behavior of the gaseous FPs will obey not only thermochemical principles, but also those of particle dynamics.
Kamide, Hideki; Ono, Ayako; Kimura, Nobuyuki; Endo, Junji*; Watanabe, Osamu*
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Safe Technologies and Sustainable Scenarios (FR-13), Companion CD (CD-ROM), 11 Pages, 2015/04
Natural circulation decay heat removal is one of the significant issues for fast reactor safety, especially in long term station blackout events. Several sodium experiments were carried out using a 7-subassmbly core model for core thermal hydraulics under natural circulation conditions and for onset transients of natural circulation in a decay heat removal system (DHRS) including natural draft. Significant heat removal via inter-wrapper flow was confirmed in the experiments. Solidification of sodium in an air cooler is one of key issues in loss of heat sink events. Natural circulation characteristics under long-term decay heat removal were also obtained. Multi-dimensional phenomena, e.g., thermal stratification and bypass flow in plenums and/or heat exchangers, may influence the natural circulation. Thus, 3D simulation method was developed for entire region in the primary loop. Comparison of temperature distributions in a DHRS heat exchanger between experiment and analysis was done.
Shimizu, Masahiro*; Endo, Junji*; Chikazawa, Yoshitaka; Kubo, Shigenobu
no journal, ,
no abstracts in English
Endo, Junji*; Oyama, Kazuhiro*; Watanabe, Osamu*; Doda, Norihiro
no journal, ,
Adoption of natural circulation decay heat removal system is being investigated for commercialized sodium-cooled fast reactors. In this study, CFD simulations of primary heat transport systems including a core and decay heat removal systems in a loss-of-offsite-power event were conducted to evaluate the influence of thermal stratification and natural convection phenomena in the core upper plenum primary and the heat transport piping on the decay heat removal. From the simulation results, it was confirmed that the core is stably cooled by natural circulation, although drift occurs in the flow in the cold led pipes during the transition from forced to natural circulation.
Sato, Isamu; Tanaka, Kosuke; Koyama, Shinichi; Matsushima, Kenichi*; Matsunaga, Junji*; Hirai, Mutsumi*; Endo, Hiroshi*; Haga, Kazuo*
no journal, ,
Thermochemical equilibrium calculations of gaseous chemical forms and adhering chemical forms of fission products and fuel elements were performed simulating the heating test condition done for irradiated fuels to discuss the release behavior of fission products from overheated fuels.
Kubo, Shigenobu; Chikazawa, Yoshitaka; Shimakawa, Yoshio*; Endo, Junji*; Sakaba, Hiroshi*
no journal, ,
Design study of a decay heat removal system to comply with the safety design criteria for the Generation-IV SFR has been carried out. This paper reports adequacy evaluation of candidates for design requirements.
Kato, Atsushi; Onoda, Yuichi; Miyagawa, Takayuki*; Endo, Junji*; Kubo, Koji*
no journal, ,
JAEA is studying 600 MWe pool-type sodium-cooled fast reactor. This report presents thermal hydraulic study in a reactor vessel and structural intactness evaluation in case of station black out and reactor trip.