Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Endo, Shunsuke; Okudaira, Takuya*
Hamon, 33(2), p.68 - 72, 2023/05
no abstracts in English
Kunieda, Satoshi; Endo, Shunsuke; Kimura, Atsushi
EPJ Web of Conferences, 281, p.00017_1 - 00017_6, 2023/03
The AMUR code, which is based on the multi-channel/multi-level R-matrix theory, is under development for the cross-section evaluation with the covariance data in the resolved resonance energy region. Although, the code was initially designed for the analysis of the light-nuclei, the authors extended its capability toward the analysis of heavier nuclei by introducing the Reich-Moore approximation and the free-gas approximation for the Doppler broadening. In this work, we challenge a resonance analysis of neutron cross-section data measured in J-PARC/ANNRI with AMUR, in which the resolution functions and the double-bunching effects were taken into account inside the code. In this presentation, let us show results of resonance analysis on some of the J-PARC/ANNRI measurements together with covariance of the resonance parameters and cross-sections, for the first time. We also plan to discuss differences of correlation matrices among approximations of the R-matrix theory to understand physics underlying on the resonant reaction.
Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.
EPJ Web of Conferences, 281, p.00012_1 - 00012_5, 2023/03
Kinoshita, Norikazu*; Noto, Takuma*; Nakajima, Hitoshi*; Kosako, Kazuaki*; Kato, Takahiro*; Kuroiwa, Yoichi*; Kurabe, Misako*; Sasaki, Yuki*; Torii, Kazuyuki*; Maeda, Makoto; et al.
Journal of Radioanalytical and Nuclear Chemistry, 332(2), p.479 - 486, 2023/02
Nakamura, Shoji; Shibahara, Yuji*; Kimura, Atsushi; Endo, Shunsuke; Shizuma, Toshiyuki*
Journal of Nuclear Science and Technology, 10 Pages, 2023/00
Times Cited Count:0 Percentile:0.04(Nuclear Science & Technology)In recent years, research has been advanced on lead-cooled fast reactors and accelerator drive systems, and it is required to improve the accuracy of the neutron capture cross section of Pb isotopes. Although Pb has a small natural abundance, it is of importance because it produces the long-lived radionuclide
Pb (17.3 million years) by neutron capture reaction. However, it is difficult to measure its cross section by a conventional activation method using a nuclear reactor because the induced radioactivity of
Pb is weak. Hence, the cross-section measurement was performed by applying mass spectrometry. This presentation gives the details of the experiment and the results obtained in the neutron capture cross-section measurement of
Pb using mass spectroscopy.
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 11 Pages, 2023/00
Times Cited Count:0The thermal-neutron capture cross section () and resonance integral (I
) for
Nb among nuclides for decommissioning were measured by an activation method and the half-life of
Nb by mass analysis. Niobium-93 samples were irradiated with a hydraulic conveyer installed in the research reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Gold-aluminum, cobalt-aluminum alloy wires were used to monitor thermal-neutron fluxes and epi-thermal Westcott's indexes at an irradiation position. A 25-
m-thick gadolinium foil was used to sort out reactions ascribe to thermal-and epi-thermal neutrons. Its thickness provided a cut-off energy of 0.133 eV. In order to attenuate radioactivity of
Ta due to impurities, the Nb samples were cooled for nearly 2 years. The induced radio activity in the monitors and Nb samples were measured by
-ray spectroscopy. In analysis based on Westcott's convention, the
and I
values were derived as 1.11
0.04 barn and 10.5
0.6 barn, respectively. After the
-ray measurements, mass analysis was applied to the Nb sample to obtain the reaction rate. By combining data obtained by both
-ray spectroscopy and mass analysis, the half-life of
Nb was derived as (2.00
0.15)
10
years.
Nakano, Hideto*; Katabuchi, Tatsuya*; Rovira Leveroni, G.; Kodama, Yu*; Terada, Kazushi*; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke
Journal of Nuclear Science and Technology, 59(12), p.1499 - 1506, 2022/12
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Endo, Shunsuke; Okudaira, Takuya*; Abe, Ryota*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Oku, Takayuki; Sakai, Kenji; Shima, Tatsushi*; et al.
Physical Review C, 106(6), p.064601_1 - 064601_7, 2022/12
Times Cited Count:0 Percentile:0.02(Physics, Nuclear)no abstracts in English
Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*; Sato, Yaoki*
JAEA-Conf 2022-001, p.91 - 96, 2022/11
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 59(11), p.1388 - 1398, 2022/11
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)The present study selected Np among radioactive nuclides and aimed to measure the thermal-neutron capture cross-section for
Np in a well-thermalized neutron field by an activation method. A
Np standard solution was used for irradiation samples. A thermal-neutron flux at an irradiation position was measured with neutron flux monitors:
Sc,
Co,
Mo,
Ta and
Au. The
Np sample and flux monitors were irradiated together for 30 minutes in the graphite thermal column equipped with the Kyoto University Research Reactor. The similar irradiation was carried out twice. After the irradiations, the
Np samples were quantified using 312-keV gamma ray emitted from
Pa in a radiation equilibrium with
Np. The reaction rates of
Np were obtained from gamma-ray peak net counts given by
Np, and then the thermal-neutron capture cross-section of
Np was found to be 173.8
4.4 barn by averaging the results obtained by the two irradiations. The present result was in agreement with the reported data given by a time-of-flight method within the limit of uncertainty.
Shizuma, Toshiyuki*; Endo, Shunsuke; Kimura, Atsushi; Massarczyk, R.*; Schwengner, R.*; Beyer, R.*; Hensel, T.*; Hoffmann, H.*; Junghans, A.*; Rmer, K.*; et al.
Physical Review C, 106(4), p.044326_1 - 044326_11, 2022/10
Times Cited Count:0 Percentile:0.02(Physics, Nuclear)no abstracts in English
Endo, Shunsuke; Shizuma, Toshiyuki*; Zen, H.*; Taira, Yoshitaka*; Omer, M.; Kawamura, Shiori*; Abe, Ryota*; Okudaira, Takuya*; Kitaguchi, Masaaki*; Shimizu, Hirohiko*
UVSOR-49, P. 38, 2022/08
Nakamura, Shoji; Endo, Shunsuke; Kimura, Atsushi; Shibahara, Yuji*
KURNS Progress Report 2021, P. 93, 2022/07
In terms of nuclear transmutation studies of minor actinides in nuclear wastes, the present work selected Np among them and aimed to measure the thermal-neutron capture cross-section of
Np using a well-thermalized neutron field by a neutron activation method because there have been discrepancies among reported cross-section data. A
Np standard solution was used for irradiation samples. The thermal-neutron flux at an irradiation position was measured with flux monitors:
Sc,
Co,
Mo,
Ta and
Au. The
Np sample was irradiated together with the flux monitors for 30 minutes in the graphite thermal column equipped in the Kyoto University Research Reactor. The similar irradiation was repeated once more to confirm the reproducibility of the results. After irradiation, the
Np samples were quantified using 312-keV gamma-ray emitted from
Pa in radiation equilibrium with
Np. The reaction rates of
Np were obtained from the peak net counts of gamma-rays emitted from generated
Np, and then the thermal-neutron capture cross-section of
Np was found to be 173.8
4.7 barn by averaging the results obtained by the two irradiations. The present result was in agreement with the reported data given by a time-of-flight method within a limit of uncertainty.
Maeda, Makoto; Segawa, Mariko; Toh, Yosuke; Endo, Shunsuke; Nakamura, Shoji; Kimura, Atsushi
Scientific Reports (Internet), 12(1), p.6287_1 - 6287_8, 2022/06
Times Cited Count:1 Percentile:43.85(Multidisciplinary Sciences)Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*; Sato, Yaoki*; et al.
Journal of Nuclear Science and Technology, 59(5), p.647 - 655, 2022/05
Times Cited Count:1 Percentile:25.87(Nuclear Science & Technology)Koga, Jun*; Takada, Shusuke*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Niinomi, Yudai*; Okudaira, Takuya*; et al.
Physical Review C, 105(5), p.054615_1 - 054615_5, 2022/05
Times Cited Count:1 Percentile:56.18(Physics, Nuclear)no abstracts in English
Rovira Leveroni, G.; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Nobuyuki; Endo, Shunsuke; Katabuchi, Tatsuya*; Terada, Kazushi*; Kodama, Yu*; Nakano, Hideto*; et al.
JAEA-Conf 2021-001, p.156 - 161, 2022/03
Nakano, Hideto*; Katabuchi, Tatsuya*; Rovira Leveroni, G.*; Kodama, Yu*; Terada, Kazushi*; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke
JAEA-Conf 2021-001, p.166 - 170, 2022/03
Kodama, Yu*; Katabuchi, Tatsuya*; Rovira Leveroni, G.; Nakano, Hideto*; Terada, Kazushi*; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke
JAEA-Conf 2021-001, p.162 - 165, 2022/03
Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Terada, Kazushi*; Meigo, Shinichiro; Toh, Yosuke; Segawa, Mariko; et al.
Journal of Nuclear Science and Technology, 59(3), p.318 - 333, 2022/03
Times Cited Count:1 Percentile:25.87(Nuclear Science & Technology)