Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Impact of nuclear data revised from JENDL-4.0 to JENDL-5 on PWR spent fuel nuclide composition

Watanabe, Tomoaki; Tada, Kenichi; Endo, Tomohiro*; Yamamoto, Akio*

Journal of Nuclear Science and Technology, 60(11), p.1386 - 1396, 2023/11

 Times Cited Count:3 Percentile:95.99(Nuclear Science & Technology)

The burnup calculations for estimating the nuclide composition of the spent fuel are highly dependent on nuclear data. Many nuclides in the latest version of the Japanese Evaluated Nuclear Data Library JENDL-5 were modified from JENDL-4.0 and the modification affects the burnup calculations. This study confirmed the validity of JENDL-5 in the burnup calculations. The PIE data of Takahama-3 was used for the validation. The effect of modifications of the parameters, e.g., cross sections and fission yields, from JENDL-4.0 to JENDL-5 on the nuclide compositions was quantitatively investigated. The calculation results showed that JENDL-5 has a similar performance to JENDL-4.0. The calculation results also revealed that the modifications of the cross sections of actinide nuclides, fission yields, and thermal scattering low data of hydrogen in H$$_{2}$$O affected the nuclide compositions of PWR spent fuels.

Journal Articles

Comparison of neutronic characteristics of BWR burnup fuel between JENDL-4.0 and JENDL-5

Watanabe, Tomoaki; Tada, Kenichi; Endo, Tomohiro*; Yamamoto, Akio*

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 10 Pages, 2023/10

The latest Japanese nuclear data library, JENDL-5, was released in December 2021. In JENDL-5, nuclear reaction cross sections for Gd-155 and Gd-157 were modified in addition to many heavy nuclides such as U-235. Fission yields and decay data, which are essential to characterize burnup fuels, were completely revised. This study investigated the effects of the nuclear data revisions from JENDL-4.0 to JENDL-5 on the neutronic characteristics of burnup fuels to validate JENDL-5. Burnup calculations of the 9x9 STEP-3 BWR fuel assembly based on the OECD/NEA Phase III-C benchmark were performed using JENDL-4.0 and JENDL-5. As a result, the k$$_{inf}$$ for JENDL-5 was smaller than that of JENDL-4.0 throughout the burnup, with a large difference of about 600 pcm at 12 GWd/t, around the peak of the k$$_{inf}$$. Above 20 GWd/t, the difference in k$$_{inf}$$ increases with increasing burnup value, reaching nearly 600 pcm at 50 GWd/t. In addition, this study investigates which nuclear data contribute significantly to the difference in k$$_{inf}$$ by performing burnup calculations with replacing nuclear data of individual nuclides from JENDL-4.0 to JENDL-5.

JAEA Reports

Irradiation test using foreign reactor, 1; Study of irradiation test with capsule temperature control system (Joint research)

Takabe, Yugo; Otsuka, Noriaki; Fuyushima, Takumi; Sayato, Natsuki; Inoue, Shuichi; Morita, Hisashi; Jaroszewicz, J.*; Migdal, M.*; Onuma, Yuichi; Tobita, Masahiro*; et al.

JAEA-Technology 2022-040, 45 Pages, 2023/03

JAEA-Technology-2022-040.pdf:6.61MB

Because of the decommission of the Japan Materials Testing Reactor (JMTR), the domestic neutron irradiation facility, which had played a central role in the development of innovative nuclear reactors and the development of technologies to further improve the safety, reliability, and efficiency of light water reactors, was lost. Therefore, it has become difficult to pass on the operation techniques of the irradiation test reactors and irradiation technologies, and to train human resources. In order to cope with these issues, we conducted a study on the implementation of irradiation tests using overseas reactors as neutron irradiation sites as an alternative method. Based on the "Arrangement between the National Centre for Nuclear Research and the Japan Atomic Energy Agency for Cooperation in Research and Development on Testing Reactor," the feasibility of conducting an irradiation test at the MARIA reactor (30 MW) owned by the National Centre for Nuclear Research (NCBJ) using the temperature control system, which is one of the JMTR irradiation technologies, was examined. As a result, it was found that the irradiation test was possible by modifying the ready-made capsule manufactured in accordance with the design and manufacturing standards of the JMTR. After the modification, a penetration test, an insulation continuity test, and an operation test in the range of room temperature to 300$$^{circ}$$C, which is the operating temperature of the capsule, were conducted and favorable results were obtained. We have completed the preparations prior to transport to the MARIA reactor.

JAEA Reports

Investigation on soundness of JMTR Facility piping by ultrasonic thickness measurement

Omori, Takazumi; Otsuka, Kaoru; Endo, Yasuichi; Takeuchi, Tomoaki; Ide, Hiroshi

JAEA-Review 2021-015, 57 Pages, 2021/11

JAEA-Review-2021-015.pdf:6.3MB

The JMTR reactor facility was selected as a decommissioning one in the Medium/Long-Term Management Plan of JAEA Facilities formulated on April 1, 2017. Therefore, the decommissioning plan was submitted to Nuclear Regulation Authority on September 18, 2019, and the approval was obtained on March 17, 2021 after two amendments. Currently, preparations for decommissioning are underway. The JMTR reactor facility has been aged for more than 50 years since the first criticality in March 1968. However, some of the water piping systems has not been updated since its construction, and there is a possibility of pipe wall thinning due to corrosion, etc. Therefore, the integrity of the water piping was investigated for the facilities that circulate cooling water and pump radioactive liquid waste. In this investigation, the main circulation system of the reactor primary cooling system, the pool canal circulation system, the CF pool circulation system, the drainage system of the liquid waste disposal system, and the hydraulic rabbit irradiation system of the main experimental facility were measured for the pipe wall thickness using the Ultrasonic Thickness Measurement (UTM) method. These values satisfied the technical standards for research and test reactor facilities. No loss of integrity is expected to occur during the upcoming decommissioning period. In the future, we will periodically confirm that there is no wall thinning in the piping of the cooling water circulation and the water transmission system during the decommissioning period by using this result as basic data.

Journal Articles

Development of radiation detectors for in-pile measurement

Takeuchi, Tomoaki; Otsuka, Noriaki; Shibata, Hiroshi; Nagata, Hiroshi; Endo, Yasuichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

KAERI/GP-418/2015, p.110 - 112, 2015/00

$$gamma$$ irradiation experiments with a $$^{60}$$Co source were carried out for developing Self-Powered Gamma Detectors (SPGDs) with lead (Pb) emitter and Self-Powered Neutron Detectors (SPNDs) with Pt-40%Rh emitter prior to in-core irradiation experiments. The results showed the output currents of the SPGDs were proportional to the $$gamma$$ dose rate in the range from about 200-6000 Gy/h with about 10% accuracy. In the case of SPNDs, the output currents flowed in inverse direction and were an order of magnitude lower compared with that of the SPGDs. These different behaviors of the output currents are considered to be caused by the difference in the emitter sizes and the current component originated at the MI cables.

Oral presentation

Supercapacitor using lithium-ion endohedral metallofullerene

Kwon, E.*; Komatsu, Kenichiro*; Yamada, Yoichi*; Hasegawa, Yuri*; Sato, Sho*; Sakai, Seiji; Kawachi, Kazuhiko*; Yokoo, Kuniyoshi*; Ono, Shoichi*; Kasama, Yasuhiko*; et al.

no journal, , 

Oral presentation

Effect of thermal scattering law data for H in H$$_{2}$$O of JENDL-5 at several moderator temperatures on neutronics calculation

Tada, Kenichi; Watanabe, Tomoaki; Endo, Tomohiro*; Yamamoto, Akio*

no journal, , 

The PWR pin-cell calculations using the cross section data of each evaluated nuclear data library were compared at several moderator temperatures for the verification of the thermal scattering law data for H in H$$_{2}$$O of JENDL-5. Compared with the commonly used evaluated nuclear data libraries JENDL-4.0 and ENDF-B/VII.1, the relative differences of k-infinity varied with the moderator temperature. This difference may affect the moderator temperature coefficient. However, it is difficult to judge which library is good since there are not so much experimental data for the cross section and double differential cross section measurement of high-temperature H in H$$_{2}$$O data. Additional experimental data are required to improve the prediction accuracy of the thermal scattering law data for H in H$$_{2}$$O data.

7 (Records 1-7 displayed on this page)
  • 1