Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 22

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

22A beam production of the uniform negative ions in the JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, L. R.*; Hatayama, Akiyoshi*; Shibata, Takanori*; Yamamoto, Takashi*; Akino, Noboru; Endo, Yasuei; et al.

Fusion Engineering and Design, 96-97, p.616 - 619, 2015/10

 Times Cited Count:10 Percentile:73.32(Nuclear Science & Technology)

In JT-60 Super Advanced for the fusion experiment, 22A, 100s negative ions are designed to be extracted from the world largest ion extraction area of 450 mm $$times$$ 1100 mm. One of the key issues for producing such as high current beams is to improve non-uniform production of the negative ions. In order to improve the uniformity of the negative ions, a tent-shaped magnetic filter has newly been developed and tested for JT-60SA negative ion source. The original tent-shaped filter significantly improved the logitudunal uniformity of the extracted H$$^{-}$$ ion beams. The logitudinal uniform areas within a $$pm$$10 deviation of the beam intensity were improved from 45% to 70% of the ion extraction area. However, this improvement degrades a horizontal uniformity. For this, the uniform areas was no more than 55% of the total ion extraction area. In order to improve the horizontal uniformity, the filter strength has been reduced from 660 Gasus$$cdot$$cm to 400 Gasus$$cdot$$cm. This reduction improved the horizontal uniform area from 75% to 90% without degrading the logitudinal uniformity. This resulted in the improvement of the uniform area from 45% of the total ion extraction areas. This improvement of the uniform area leads to the production of a 22A H$$^{-}$$ ion beam from 450 mm $$times$$ 1100 mm with a small amount increase of electron current of 10%. The obtained beam current fulfills the requirement for JT-60SA.

Journal Articles

Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

Kojima, Atsushi; Umeda, Naotaka; Hanada, Masaya; Yoshida, Masafumi; Kashiwagi, Mieko; Tobari, Hiroyuki; Watanabe, Kazuhiro; Akino, Noboru; Komata, Masao; Mogaki, Kazuhiko; et al.

Nuclear Fusion, 55(6), p.063006_1 - 063006_9, 2015/06

 Times Cited Count:29 Percentile:89.03(Physics, Fluids & Plasmas)

Significant progresses in the extension of pulse durations of powerful negative ion beams have been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long pulse production/acceleration of negative ion beams in JT-60SA and ITER, the new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long pulse production of high-current negative ions for JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, the each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the cesium coverage in large extraction area is one of the common issues between JT-60SA and ITER. As for the long pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high-transmission of negative ions. A long pulse acceleration of 60 s has been achieved at 70 MW/m$$^{2}$$ (683 keV, 100 A/m$$^{2}$$) which has reached to the power density of JT-60SA level of 65 MW/m$$^{2}$$.

JAEA Reports

Disassembly of the NBI system on JT-60U for JT-60 SA

Akino, Noboru; Endo, Yasuei; Hanada, Masaya; Kawai, Mikito*; Kazawa, Minoru; Kikuchi, Katsumi*; Kojima, Atsushi; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; et al.

JAEA-Technology 2014-042, 73 Pages, 2015/02

JAEA-Technology-2014-042.pdf:15.1MB

According to the project plan of JT-60 Super Advanced that is implemented as an international project between Japan and Europe, the neutral beam (NB) injectors have been disassembled. The disassembly of the NB injectors started in November, 2009 and finished in January, 2012 without any serious problems as scheduled. This reports the disassembly activities of the NB injectors.

Journal Articles

Improvement of uniformity of the negative ion beams by Tent-shaped magnetic field in the JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, L. R.*; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; et al.

Review of Scientific Instruments, 85(2), p.02B314_1 - 02B314_4, 2014/02

 Times Cited Count:12 Percentile:55.08(Instruments & Instrumentation)

Non-uniformity of the negative ion beams in the JT-60 negative ion source was improved by modifying an external magnetic field to a tent-shaped magnetic field for reduction of the local heat loads in the source. Distributions of the source plasmas (H$$^{+}$$ ions and H$$^{0}$$ atoms) of the parents of H$$^{-}$$ ions converted on the cesium covered plasma grids were measured by Langmuir probes and emission spectroscopy. Beam intensities of the H$$^{-}$$ ions extracted from the plasma grids were measured by IR camera from the back of the beam target plate. The tent-shaped magnetic field prevented the source plasmas to be localized by B $$times$$ grad B drift of the primary electrons emitted from the filaments in the arc chamber. As a result, standard derivation of the H$$^{-}$$ ions beams was reduced from 14% (the external magnetic field) to 10% (the tent-shaped magnetic field) without reduction of an activity of the H$$^{-}$$ ion production.

Journal Articles

Origin of non-uniformity of the source plasmas in JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Kashiwagi, Mieko; Grisham, L. R.*; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; et al.

Plasma and Fusion Research (Internet), 8(Sp.1), p.2405146_1 - 2405146_4, 2013/11

Distributions of H$$^{0}$$ and H$$^{+}$$ in the source plasmas produced at the end-plugs of JT-60 negative ions source were measured by Langmuir probes and emission spectroscopy in order to experimentally investigate the cause of lower density of the negative ions extracted from end-plugs in the source. Densities of H$$^{0}$$ and H$$^{+}$$ in end-plugs of the plasma grid in the source were compared with those in the center regions. As a result, lower density of the negative ion at the edge was caused by lower beam optics due to lower and higher density of the H$$^{0}$$ and H$$^{+}$$.

Journal Articles

Progress in development and design of the neutral beam injector for JT-60SA

Hanada, Masaya; Kojima, Atsushi; Tanaka, Yutaka; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; et al.

Fusion Engineering and Design, 86(6-8), p.835 - 838, 2011/10

 Times Cited Count:8 Percentile:58.2(Nuclear Science & Technology)

Neutral beam (NB) injectors for JT-60 Super Advanced (JT-60SA) have been designed and developed. Twelve positive-ion-based and one negative-ion-based NB injectors are allocated to inject 30 MW D$$^{0}$$ beams in total for 100 s. Each of the positive-ion-based NB injector is designed to inject 1.7 MW for 100s at 85 keV. A part of the power supplies and magnetic shield utilized on JT-60U are upgraded and reused on JT-60SA. To realize the negative-ion-based NB injector for JT-60SA where the injection of 500 keV, 10 MW D$$^{0}$$ beams for 100s is required, R&Ds of the negative ion source have been carried out. High-energy negative ion beams of 490-500 keV have been successfully produced at a beam current of 1-2.8 A through 20% of the total ion extraction area, by improving voltage holding capability of the ion source. This is the first demonstration of a high-current negative ion acceleration of $$>$$1 A to 500 keV. The design of the power supplies and the beamline is also in progress. The procurement of the acceleration power supply starts in 2010.

Journal Articles

Development of the JT-60SA Neutral Beam Injectors

Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; Kazawa, Minoru; et al.

AIP Conference Proceedings 1390, p.536 - 544, 2011/09

 Times Cited Count:5 Percentile:77.65

no abstracts in English

Journal Articles

Development and design of the negative-ion-based NBI for JT-60 Super Advanced

Hanada, Masaya; Akino, Noboru; Endo, Yasuei; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; Komata, Masao; Kojima, Atsushi; Mogaki, Kazuhiko; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.208 - 213, 2010/08

A large negative ion source with an ion extraction area of 110 cm $$times$$ 45 cm has been developed to produce 500 keV, 22 A D$$^{-}$$ ion beams required for JT-60 Super Advanced. To realize the JT-60SA negative ion source, the JT-60 negative ion source has been modified and tested on the negative-ion-based neutral beam injector on JT-60U. A 500 keV H$$^{-}$$ ion beam has been produced at 3 A without a significant degradation of beam optics. This is the first demonstration of a high energy negative ion acceleration of more than one-ampere to 500 keV in the world. The beam current density of 90 A/m$$^{2}$$ is being increased to meet 130 A/m$$^{2}$$ of the design value for JT-60SA by tuning the operation parameters. A long pulse injection of 30 s has been achieved at a injection D$$^{0}$$ power of 3 MW. The injection energy, defined as the product of the injection time and power, reaches 80 MJ by neutralizing a 340 keV, 27 A D$$^{-}$$ ion beam produced with two negative ion sources.

Oral presentation

Upgrade of the NBI power supply system on JT-60U for a 100-s injection

Usui, Katsutomi; Kikuchi, Katsumi; Noto, Katsuya; Endo, Yasuei; Sasaki, Shunichi; Kawai, Mikito; Hanada, Masaya

no journal, , 

no abstracts in English

Oral presentation

Disassembly of the NBI system on JT-60U

Hanada, Masaya; Kawai, Mikito; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Usui, Katsutomi; Mogaki, Kazuhiko; Sasaki, Shunichi; Kikuchi, Katsumi; Oshima, Katsumi; et al.

no journal, , 

no abstracts in English

Oral presentation

Upgrade of the negative-ion-based NBI power supply system on JT-60U for a 100-s injection

Sasaki, Shunichi; Usui, Katsutomi; Kikuchi, Katsumi; Endo, Yasuei; Kubo, Naoya; Kawai, Mikito; Hanada, Masaya

no journal, , 

no abstracts in English

Oral presentation

The Upgraded power supply in NBI system towards JT-60SA

Usui, Katsutomi; Hanada, Masaya; Sasaki, Shunichi; Endo, Yasuei; Seki,Hiroshi*

no journal, , 

no abstracts in English

Oral presentation

Long pulse operation of power supply is for the JT-60 negative ion source

Sasaki, Shunichi; Endo, Yasuei; Terunuma, Yuto; Hanada, Masaya; Kojima, Atsushi

no journal, , 

no abstracts in English

Oral presentation

Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ozeki, Masahiro; et al.

no journal, , 

Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the PG filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to $$sim$$10% without a reduction of the negative ion production.

Oral presentation

Upgrade of acceleration power supply on the negative-ion-based neutral beam injector system for a long pulse operation in JT-60SA

Sasaki, Shunichi; Hanada, Masaya; Akino, Noboru; Endo, Yasuei; Shimizu, Tatsuo

no journal, , 

no abstracts in English

Oral presentation

Improvement of uniformity of the negative ion beams by Tent-shaped magnetic field in JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ozeki, Masahiro; et al.

no journal, , 

no abstracts in English

Oral presentation

22A production of uniform negative ion beams in the JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ozeki, Masahiro; et al.

no journal, , 

In JT-60SA for the fusion experiment, 22A, 100s D$$^{-}$$ ions are designed to be extracted from the world largest ion extraction area of 450 mm $$times$$ 1100 mm. One of the key issues for producing such as high current beams is to improve non-uniform production of the negative ions. In order to improve the uniformity of the negative ions, a tent-shaped magnetic filter has newly been developed and tested for JT-60SA negative ion source. The non-uniformity of the negative ions is experimentally found to be caused by a localization of H$$^{+}$$ ions and H$$^{0}$$ atoms, which are produced by primary electrons emitted from filaments and are converted to H$$^{-}$$ ions on the surface of plasma grids covered with cesium. By modifying from the conventional magnetic filter to the tent-shaped one, the uniform areas were expanded from 45% of the full extraction areas in the conventional magnetic filter to 60%. Finally, 22A production of the negative ion beams was successfully achieved in the uniform areas.

Oral presentation

Optimization of the magnetic configlation toward large current beam production in the JT-60SA negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Umeda, Naotaka; Hiratsuka, Junichi; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; et al.

no journal, , 

One of the key issues for producing high current beams in JT-60SA is a uniform production of the negative ions over the large ion extraction area. Non-uniformity of the negative ion beams in the JT-60 negative ion source was improved by modifying the magnetic filter in the source from the PG filter to a tent-shaped filter. In this work, in order to clarify the influence of the magnetic filter modification on arc efficiency and co-electron current is investigated by means of measurements of H ion, H atoms, co-electron current and beam intensity. As a result, the arc efficiency increase due to increase of H ions and H atoms by reduction of filter field. Although the higher electrons current was extracted than the original PG filter, the co-extracted electron could be suppressed by optimization of the bias voltage. This result contributes to extend the pulse duration time up to 100 s for JT-60SA.

Oral presentation

Present status of the development and procurement on neutral beam injectors for JT-60 SA

Hanada, Masaya; Kojima, Atsushi; Akino, Noboru; Komata, Masao; Mogaki, Kazuhiko; Sasaki, Shunichi; Nemoto, Shuji; Shimizu, Tatsuo; Ozeki, Masahiro; Oasa, Kazumi; et al.

no journal, , 

This paper reports the present status of the research and developments to realize the neutral beam (NB) injectors for JT-60 SA where a total injection power and pulse duration time are 34 MW and 100 s, respectively. The research and development for the positive-ion-based NB injector has been well in progress, which ensures to inject 24 MW, 85 keV for 100 s from twelve injectors. As for the negative-ion-based NB (N-NB) injector, the performance of the negative ion beam has been energetically improved by modifying the JT-60 negative ion source to realize a 10 MW, 500 keV for 100 s. The achievements of the beam performance fulfills the beam current of 22A, the beam energy of 500 keV, pulse duration time of 100 s required for JT-60 SA independently. In addition, the long pulse production of the high-current beam is being tested, where 15 A of the high-current beam is produced for 100 s.

Oral presentation

Development of uniform beam production in ITER class negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Tobari, Hiroyuki; Hiratsuka, Junichi; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; et al.

no journal, , 

no abstracts in English

22 (Records 1-20 displayed on this page)