Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice

Etani, Reo*; Kataoka, Takahiro*; Kanzaki, Norie*; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro*; Taguchi, Takehito*; Yamaoka, Kiyonori*

Journal of Radiation Research, 58(5), p.614 - 625, 2017/05

 Times Cited Count:11 Percentile:51.34(Biology)

Radon therapy using radon ($$^{222}$$Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Be/m$$^{3}$$ for 24 h or were provided with hot spring water for 2 weeks. The activity density of $$^{222}$$Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying).Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury.

Journal Articles

Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice

Etani, Reo*; Kataoka, Takahiro*; Kanzaki, Norie*; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Journal of Radiation Research, 57(3), p.250 - 257, 2016/06

 Times Cited Count:10 Percentile:46.57(Biology)

Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)-induced hyperuricemia in mice. After mice inhaled radon at a concentration of 2000 Bq/m$$^{3}$$ for 24 h or were given hot spring water for 2 weeks, they were administrated PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it.

JAEA Reports

Animal study on biological responses by radon inhalation making use of waste rock which contains feeble activity of uranium, 2; (Joint research)

Ishimori, Yuu; Sakoda, Akihiro; Tanaka, Hiroshi; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*; Kataoka, Takahiro*; Etani, Reo*

JAEA-Research 2015-024, 41 Pages, 2016/03

JAEA-Research-2015-024.pdf:3.11MB

Okayama University and the Japan Atomic Energy Agency (JAEA) have carried out the collaborative study of physiological effects of inhaled radon for the low-dose range. Main assignments were as follows. Based on the clinical knowledge, Misasa Medical Center (Okayama University Hospital) clarified the issues that should be addressed. Graduate School of Health Sciences (Okayama University) supervised the research and studied the biological responses. The JAEA made the development and control of a facility for radon inhalation experiments and the investigation of biokinetics and exposure doses of radon. From 2009 to 2013, the following results were obtained. (1) Literature on drinking effects of radon hot spring water was surveyed to determine the present tasks. (2) Under the present experimental conditions, drinking of hot spring water into which radon was intentionally introduced using the equipment in the facility did not have significant effects on mice. (3) Inhibitory effects of antioxidant pre-supplements (Vitamins C and E) and radon pre-inhalation on hepatic or renal oxidative damage were examined to make the comparison. (4) In order to discuss biological responses quantitatively following radon inhalation, the biokinetics of inhaled radon were studied. (5) Some exposure routes due to inhalation of radon or its progeny were modeled to calculate organ doses in mice.

Journal Articles

Recent studies on health effects of Misasa radon hot spring

Kataoka, Takahiro*; Sakoda, Akihiro; Etani, Reo*; Ishimori, Yuu; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Onsen Kagaku, 64(4), p.380 - 387, 2015/03

Radon therapy using radon hot spring has been performed at Misasa Medical Center, Okayama University Hospital. This therapy can relieve some symptoms like pain. There have been many clinical studies, but very little data available to explain why radon inhalation results in such positive effects. The present paper mainly mentions our recent studies on health effects of radon hot spring. To clarify the radon effects, we first developed a radon exposure system for small animals. Using this system, especially in terms of antioxidative functions, we have examined effects of radon inhalation on mice. One of the results showed that the inhalation increased the activity of superoxide dismutase, which is an antioxidative enzyme, in many organs. The protective effect of radon on type I diabetes in mice was also shown. These findings indicate that the activation of antioxidative functions induced by radon inhalation relieves the symptoms brought by reactive oxygen species.

Oral presentation

Working Group Session "IRPA Practical Guidance for Engagement with the Public on Radiation and Risk"

Yoshida, Hiroko*; Nomura, Naoki*; Kono, Takahiko; Sakoda, Akihiro; Kuroda, Yujiro*; Naito, Wataru*; Hirota, Seiko*; Kudo, Shinichi*; Etani, Reo*; Chikamoto, Kazuhiko*; et al.

no journal, , 

This working group has been translating into Japanese the publication "Practical Guidance for Engagement with the Public on Radiation and Risk" by IRPA in 2020. This publication was made with the theme of public understanding, which was one of key issues that the consultation by IRPA to its member societies identified as most necessary in the radiation protection system. The translated guidance is supposed to be distributed to radiation protection experts and relevant communities in Japan who may be interested in public understanding. The purpose of this symposium is to share the working progress and important points of the guidance.

Oral presentation

Activity report from IRPA Practical Guidance for Engagement with the Public on Radiation and Risk Working Group

Yoshida, Hiroko*; Nomura, Naoki*; Kono, Takahiko; Sakoda, Akihiro; Kuroda, Yujiro*; Naito, Wataru*; Hirota, Seiko*; Kudo, Shinichi*; Takahara, Shogo; Etani, Reo*; et al.

no journal, , 

The WG has translated the "Practical Guidance for Engagement with the Public on Radiation and Risk" ("IRPA Guidance") issued by the International Radiation Protection Association ("IRPA") to its member societies in 2020. "Practical Guidance for Engagement with the Public on Radiation and Risk" (hereinafter referred to as "IRPA Guidance") published by the International Radiological Protection Association (hereinafter referred to as "IRPA") in 2020 for its member societies, and to provide the information to radiation protection experts and other interested.

Oral presentation

Planning session from IRPA Practical Guidance for Engagement with the Public on Radiation and Risk Working Group

Yoshida, Hiroko*; Nomura, Naoki*; Kono, Takahiko; Sakoda, Akihiro; Kuroda, Yujiro*; Naito, Wataru*; Hirota, Seiko*; Kudo, Shinichi*; Kawaguchi, Isao*; Etani, Reo*; et al.

no journal, , 

The WG has translated the "Practical Guidance for Engagement with the Public on Radiation and Risk" ("IRPA Guidance") issued by the International Radiation Protection Association ("IRPA") to its member societies in 2020. "The content of the IRPA guidance was presented at a symposium organized by the Health Physics Society of Japan in June 2020. The content of the IRPA guidance was presented at the Health Physics Society planning symposium held in June 2020, where many experts attended and provided feedback. In this planning session, we will focus on public engagement and related specific examples and situations related to public engagement.

7 (Records 1-7 displayed on this page)
  • 1