Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 141

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress of sodium-cooled fast reactor developments in Japan taking into account total lifecycle, risk-informed approach, and sustainability

Kamide, Hideki; Asayama, Tai; Wakai, Takashi; Ezure, Toshiki; Uchibori, Akihiro; Kubo, Shigenobu; Takeuchi, Masayuki

Nuclear Engineering and Design, 421, p.113062_1 - 113062_10, 2024/05

A sodium cooled fast reactor (SFR) is one of the most relevant and decarbonized energy supply system with higher sustainability on natural resources, footprint, and waste management. It was planned in a strategic roadmap of fast reactor decided by Inter-Ministerial Council for Nuclear Power Japan in 2022 to start a conceptual design of a demonstration reactor from 2024 with a background of accumulated knowledge and experiences of SFR development. For example, a design and lifecycle simulation/evaluation system named ARKADIA has been developed to accelerate such design works. It will enable to take into account plant lifecycle, e.g., operation and maintenance, to the plant design and optimize it based on simulations and knowledgebase. This paper shows research progresses of ARKADIA, safety design and evaluations, codes and standards, fuel cycle, and SFR development projects in Japan.

Journal Articles

Experiment on gas entrainment evaluation method from free liquid surface in a sodium-cooled fast reactor, 1; Measurement of velocity distributions in the experimental flow area by PIV method

Kobayashi, Shunsuke*; Endo, Kazuki*; Jasmine, H.*; Sakai, Takaaki*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

Assuming gas entrainment (GE) to the main coolant circulation system from cover gas which is an inert gas to cover sodium coolant in a reactor vessel of the sodium cooled fast reactor, there is a concern that reactivity disturbance will occur when bubbles pass through the reactor core. Conventionally, an evaluation method based on static vortex extension theory has been employed for the GE prediction. However, it is known that the method gives rather overestimation for the GE occurrence from the unsteady traveling vortex dimple at the wide liquid surface. In order to contribute to understand the phenomena, experimental data have been accumulated by the basic water experiment. In this study, the velocity distributions were measured under the conditions where GE occurs by particle image velocity (PIV) measurement in an experimental system to observe the gas cores that grow from the unsteady traveling vortex dimple.

Journal Articles

Validation of gas entrainment evaluation method in simplified hot plenum model of sodium cooled fast reactor

Ezure, Toshiki; Akimoto, Yuta; Matsushita, Kentaro; Tanaka, Masaaki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

In hot plenums of sodium-cooled fast reactors, restriction of cover gas entrainment caused by vortex dimples on the free surface is an important thermal-hydraulic issue. For this reason, the authors have developed an evaluation method of gas entrainment with an evaluation tool named, StreamViewer. In this study, evaluation using StreamViewer was applied to a water experiment having a simplified hot pool geometry aiming at the validation of the evaluation method toward the application to the evaluation of a pool-type sodium cooled fast reactor. In StreamViewer, the three-dimensional distribution of pressure decrease along the vortex center line was calculated from the velocity distribution obtained by CFD analyses, and the free surface dimple depth was obtained from the hydraulic balance with the pressure distribution and the cover gas pressure. As the results, it was confirmed that the onset of gas entrainment could be predicted appropriately based on the above-mentioned calculation method.

Journal Articles

Experiment on gas entrainment evaluation method from free liquid surface in a sodium-cooled fast reactor, 2; Measurement of gas core length by dynamic image processing

Endo, Kazuki*; Kobayashi, Shunsuke*; Jasmine, H.*; Sakai, Takaaki*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

Assuming gas entrainment (GE) to the main coolant circulation system from cover gas which is an inert gas to cover sodium coolant in a reactor vessel of the sodium cooled fast reactor, there is a concern that reactivity disturbance will occur when bubbles pass through the reactor core. Conventionally, an evaluation method based on static vortex extension theory has been employed for the GE prediction. However, it is known that the method gives rather overestimation for the GE occurrence from the unsteady traveling vortex dimple at the wide liquid surface. In order to contribute to understand the phenomena, experimental data have been accumulated by the basic water experiment. In this study, measurement was performed for the length of a gas cores that grew while moving on the free liquid surface by dynamic image processing, and the types of the GEs and the occurrence conditions were evaluated.

Journal Articles

Development of gas entrainment evaluation method considering three-dimensional pressure decrease distribution along the center of free surface vortex

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

In design of sodium-cooled fast reactors (SFRs), cover gas entrainment phenomena induced by vortex dimple at free surface in upper plena is an important thermal-hydraulic issue. Authors have developed an evaluation method of gas entrainment with an evaluation tool named "StreamViewer". In this study, modification of evaluation model to improve quantitatively prediction accuracy of gas core length was investigated. In this model, vortex center lines which elongated from suction port where entrance of gas to heat transport system, for instance, IHX inlet in pool type SFRs, to free surface in plenum were to be identified, and distribution of pressure decrease along vortex center line was calculated to judge possibility of gas entrainment in comparisons with hydraulic head. This evaluation model was applied to results of water experiment with a rectangular open channel, where unsteady vortices are generated. It was confirmed that this model can identify occurrence of gas entrainment.

Journal Articles

Transient behavior of multi-dimensional core cooling by D-DHX in sodium-cooled fast reactors

Ezure, Toshiki; Akimoto, Yuta; Onojima, Takamitsu; Kurihara, Akikazu; Tanaka, Masaaki

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.3652 - 3662, 2023/08

In order to grasp the thermal-hydraulic behaviors during decay heat removal by dipped-direct heat exchangers (D-DHXs) in a sodium-cooled fast reactor, an experimental study was performed using a sodium experimental facility. The simulated core of PLANDTL-2 was formed by 55 hexagonal-shaped flow channel tubes, which allows to examine the cooling behavior of the simulated core region having multiple rows of fuel assemblies including the thermal hydraulic behavior to the radial direction. In this study, transient core cooling behavior in the situation after the scram with the decay heat removal using a D-DHX was examined. The time evolution of the temperature was measured in the whole system including the simulated core region. As the results, it was confirmed there was not excessively skewed temperature distribution in the radial direction in the core region.

Journal Articles

Study on uncertainty evaluation methodology for decay heat removal experiment in sodium experimental facility

Akimoto, Yuta; Ezure, Toshiki; Onojima, Takamitsu; Kurihara, Akikazu

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

A numerical analysis method has been developed to evaluate thermal-hydraulic behaviors in a reactor vessel under the operation of a NC-DHRS at the Japan Atomic Energy Agency. During the validation of the evaluation method, in addition to uncertainties due to the numerical solution and input parameters in simulations, it is important to quantify uncertainties due to the experimental data. From this perspective, JAEA has been developing an experimental database and uncertainty evaluation methods for sodium experiments during operation of the NC-DHRS. In this study, the authors have proposed an uncertainty evaluation approach during relative calibrations of thermocouples in sodium experiments. The proposed approach was applied to experimental data obtained in a sodium NC-DHRS experiment conducted at PLANDTL-2. As a result, uncertainties of the experimental data were successfully evaluated and the applicability of the method to temperature measurement in sodium experiments was confirmed.

Journal Articles

Study on measurement method of degree of difference in validation of numerical analysis for decay heat removal in sodium-cooled fast reactor

Tanaka, Masaaki; Miyake, Yasuhiro*; Ezure, Toshiki; Hamase, Erina

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The numerical analysis model for the computational fluid dynamics (CFD) code for the design study is developed to evaluate the thermal-hydraulics in the core under the core-plenum interaction (CPI) during the decay heat removal using the dipped type direct heat exchanger (D-DHX). To judge the adequacy of the numerical results for a validation study with the sodium experiment results conducted at PLANDTL-2 facility, the degree of difference (DoD) between the numerical and experimental results must be measured by using the area validation metrics (AVM). Through the examinations, the applicability of the AVM and MAVM based on the p-box method was confirmed.

Journal Articles

CFD-based analysis and experimental study on gas entrainment phenomenon due to free surface vortex

Song, K.*; Ito, Kei*; Ito, Daisuke*; Odaira, Naoya*; Saito, Yasushi*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

Gas entrainment (GE) phenomena caused by a free surface vortex may cause the disturbance in core power of sodium-cooled fast reactor (SFR). For this reason, the entrained gas flow rate by the GE should be evaluated accurately for the practical safety design of SFRs. In this study, for the purpose of examining the applicability of CFD for the accurate evaluation of GE phenomena, a CFD is applied to the simulation of the free surface vortex and accompanied GE phenomena in a cylindrical vessel with a suction pipe, and the CFD results and the experimental data of the GE are compared. As a result, the CFD and experiments show similar two-phase flow pattern inside the suction pipe, and the shape of the gas core at the free surface is also very similar. Therefore, it is confirmed that the CFD can predict the GE phenomena triggered by a free surface vortex properly and accurately within the acceptable error range.

JAEA Reports

Experimental study on prevention of high cycle thermal fatigue at the core outlet of advanced sodium-cooled fast reactor; Characteristics of temperature fluctuations and countermeasures to mitigate temperature fluctuations at a bottom of upper internal structure

Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Nagasawa, Kazuyoshi*; Kurihara, Akikazu; Tanaka, Masaaki

JAEA-Research 2022-009, 125 Pages, 2023/01

JAEA-Research-2022-009.pdf:29.22MB

The design studies of an advanced loop-type sodium-cooled fast reactor (Advanced- SFR) have been carried out by the Japan Atomic Energy Agency (JAEA). At the core outlet, temperature fluctuations occur due to mixing of hot sodium from the fuel assembly with cold sodium from the control rod channels and radial blanket assembly. These temperature fluctuations may cause high cycle thermal fatigue around a bottom of Upper Internal Structure (UIS) located above the core. Therefore, we conducted a water experiment using a 1/3 scale 60 degree sector model that simulated the upper plenum of the advanced loop-type sodium-cooled reactor. And we proposed some countermeasures against large temperature fluctuations that occur at the bottom of the UIS. In this report, we have summarized that the effect of the countermeasure structure to mitigate the temperature fluctuation generated at the bottom of UIS is confirmed, and the Reynolds number dependency of the countermeasure structure and the characteristics of the temperature fluctuation on the control rod surface.

Journal Articles

Study on gas entrainment evaluation method at free liquid surface; Application study of adaptive mesh refinement method on unsteady wake vortex analysis

Alzahrani, H.*; Matsushita, Kentaro; Sakai, Takaaki*; Ezure, Toshiki; Tanaka, Masaaki

Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 6 Pages, 2022/10

Development of evaluation method for cover gas entrainment (GE) by vortices generated at free surface in upper plenum of sodium-cooled fast reactor (SFR) is required. An evaluation method by predicting vortices from flow velocity distribution obtained by 3D CFD analysis is developed, and Adaptive Mesh Refinement (AMR) method is examined to improve efficiency of CFD analysis is examined. In this study, mesh refinement with two conditions were examined. The first one is to use negative second invariant of velocity gradient tensor, Q, and the second one is to use pressure gradient condition with Q$$<$$0. As a result of applying AMR method to unsteady vortices system with a flat plate, the mesh near stagnation area around flat plate was refined in the latter condition compared with the former. Transient analyses were performed with refined mesh by AMR method, the result of mesh using the latter condition was closer to the result of all refined mesh with pressure distribution near flat plate.

Journal Articles

Development of evaluation method of gas entrainment on the free surface in the reactor vessel in pool-type sodium-cooled fast reactors; Gas entrainment judgment based on three-dimensional evaluation of vortex center line and distribution of pressure decrease

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 8 Pages, 2022/08

Development of evaluation method for cover gas entrainment (GE) by vortices generated at free surface in upper plenum of sodium-cooled fast reactor (SFR) is required. GE evaluation tool, named StreamViewer, based on method using numerical results of three-dimensional computational fluid dynamics analysis for loop-type SFRs has been developed. In this study, modification of evaluation method of StreamViewer to rationalize conservativeness in evaluation results was examined by identifying vortex center lines and calculating three-dimensional distribution of pressure decrease along vortex center lines. The applicability of modified method was checked using water experimental result in rectangular open channel where unsteady vortices are generated. As the result, it was indicated that evaluation results on gas core depth which were excessive in current method were improved in modified method, and it is confirmed that modified method may discriminate onset of GE with appropriate criteria.

Journal Articles

Numerical simulation of sodium mist behavior in turbulent Rayleigh-B$'e$nard convection using new developed mist models

Ohira, Hiroaki*; Tanaka, Masaaki; Yoshikawa, Ryuji; Ezure, Toshiki

Annals of Nuclear Energy, 172, p.109075_1 - 109075_10, 2022/07

 Times Cited Count:1 Percentile:27.23(Nuclear Science & Technology)

In order to evaluate the mist behavior in the cover gas region of Sodium-cooled Fast Reactors (SFRs) in good accuracy, turbulent model for Rayleigh-B$'e$nard convection (RBC) was selected, and the Reynolds-averaged number density and momentum equations for mist behavior were developed and incorporated into the OpenFOAM code. In the first stage, the RBC in a simple parallel channel was calculated using Favre-averaged k-$$omega$$ SST model. The average temperature and flow characteristics agreed well with results from DNS, LES, and experiments. Then the basic heat transfer experiment simulating the cover gas region of SFRs was calculated using this turbulent model and new mist models. The calculated average temperature distribution in the height direction and the mist mass concentration agreed well with the experimental results. We developed a method that could simulate the mist behavior in turbulent RBC environments and the cover gas region of SFRs with high accuracy.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Evaluation of gas entrainment flow rate by free surface vortex

Torikawa, Tomoaki*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki

Konsoryu, 36(1), p.63 - 69, 2022/03

On free surface of a sodium cooled fast reactor, gas entrainment can be caused by free surface vortices, which may result in disturbance in core power. It is important to develop an evaluation model to predict accurately entrained gas flow rate. In this study, entrained gas flow rate a simple gas entrainment experiment is conducted with focusing on effect of pressure difference between upper and lower tanks. Pressure difference between upper and lower tanks are controlled by changing gas pressure in lower tank. As a result, it is confirmed that the entrained gas flow rate increases with increasing pressure difference between upper and lower tanks. By visualization of swirling annular flow in suction pipe, it is also observed that pressure drop in suction pipe increases with increase in entrained gas flow rate, which implies that entrained gas flow rate can be predicted by evaluation model based on pressure drop in swirling annular flow region.

Journal Articles

Gas entrainment phenomenon from free liquid surface in a sodium-cooled fast reactor; Measurements and evaluation on a gas core growth form the liquid surface

Uchida, Mao*; Alzahrani, H.*; Shiono, Mikihito*; Sakai, Takaaki*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 16 Pages, 2022/03

Gas entrainment from cover gas is one of key issues for sodium-cooled fast reactors design to prevent unexpected effects to core reactivity. A vortex model based evaluation method has been developed to evaluate the surface vortex gas core growth at the free surface in the reactor vessel. In this study, water experiments were performed to clarify the prediction accuracy for the vortex gas core growth during the vortex drift motion using a circulating water tunnel with an open flow channel test section. Gas core growth were predicted by applying the evaluation method to the numerical analyses performed in the same geometry of the experiments, and compared with the experimental results. It was observed the gas core growth became large at downstream region where downward velocity became large in experiment. However, the gas core length which were predicted from numerical result showed a discrepancy with the experimental result on the peak position and an overestimation of peak value.

Journal Articles

Water experiments on thermal striping phenomena at the core outlet of an advanced sodium-cooled fast reactor, 1; Proposal of countermeasures to mitigate temperature fluctuations around control rods

Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki

Hozengaku, 20(3), p.89 - 96, 2021/10

Hot sodium from the fuel assembly can mix with cold sodium from the control rod (CR) channel and the blanket assemblies at the bottom plate of the Upper Internal Structure (UIS) of Advanced-SFR. Temperature fluctuation due to mixing of the fluids at different temperature between the core outlet and cold channel may cause high cycle thermal fatigue on the structure around the bottom of UIS. A water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of UIS. We focused on the temperature fluctuations near the primary and backup control rod channels, and studied the countermeasure structure to mitigate the temperature fluctuation through temperature distribution and flow velocity distribution measurements. As a result, effectiveness of the countermeasure to mitigate the temperature fluctuation intensity was confirmed.

Journal Articles

Water experiments on thermal striping phenomena at the core outlet of an advanced sodium-cooled fast reactor, 2; Proposal of countermeasures to mitigate temperature fluctuations around radial blanket fuel assemblies

Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki

Hozengaku, 20(3), p.97 - 101, 2021/10

Focusing on the thermal striping phenomena that occurs at a bottom of the internal structure of an advanced sodium-cooled fast reactor (Advanced-SFR) that has been designed by the Japan Atomic Energy Agency, a water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of Upper Internal Structure (UIS). In the previous paper, we reported the effect of measures to mitigate temperature fluctuations around the control rod channels. In this paper, the same test section was used, and a water experiment was conducted to obtain the characteristics of temperature fluctuations around the radial blanket fuel assembly. And the shape of the Core Instrumentation Support Plate (CIP) was modified, and it was confirmed that it was highly effective in alleviating temperature fluctuations around the radial blanket fuel assembly.

Journal Articles

Analysis of gas entrainment phenomenon from free liquid surface for a sodium-cooled fast reactor design (Velocity profile and Strouhal number in a flow field)

Uchida, Mao*; Sakai, Takaaki*; Ezure, Toshiki; Tanaka, Masaaki

Mechanical Engineering Journal (Internet), 8(4), p.21-00161_1 - 21-00161_11, 2021/08

An evaluation method based on numerical analyses has been developed to predict occurrences gas entrainment phenomena at a free surface in a sodium-cooled fast reactor. In this study, experiments were conducted for gas entrainments due to drifting free surface vortexes observed in a circulating water tunnel geometry. Numerical analyses were also conducted in the same geometry using a computational fluid dynamics (CFD) code. Then, Strouhal numbers of vortex frequency and detailed flow velocity profiles were compared between experimental results and numerical results to clarify the evaluation accuracy of CFD calculation. As the results, the Strouhal numbers of the vortex frequency obtained from numerical analyses showed good agreement with the experimental data.

Journal Articles

Development of analysis method of gas entrainment phenomena from free surface due to unsteady vortex (Evaluation of three-dimensional distribution of reduction of pressure and identification of unsteady vortex center line)

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Nihon Kikai Gakkai Kanto Shibu Ibaraki Koenkai 2021-Nendo Koen Rombunshu (Internet), 4 Pages, 2021/08

For evaluation of gas entrainment phenomenon at free surface in reactor vessel of sodium-cooled fast reactor, the gas entrainment evaluation tool named "Stream Viewer" has been developed. In Stream Viewer, depth of surface vortex dimple is predicted by calculating pressure decrease at the vortex center using velocity distribution around the vortex and Burgers vortex model. In this report, a method to identify continuous vortex center lines from a velocity distribution is newly developed. It becomes possible to evaluate three-dimensional distribution of pressure decrease along vortex center line. Then, the method is validated by applying Stream Viewer to an open channel experiment. As the result, it was confirmed that vortex center lines were successfully identified by the improved Stream Viewer. Moreover, it was also shown that the evaluation accuracy of gas entrainment was expected to be improved by considering distribution of pressure decrease along vortex center line.

141 (Records 1-20 displayed on this page)