Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Li, F.*; Tang, X.*; Fei, Y.*; Zhang, J.*; Liu, J.*; Lang, P.*; Che, G.*; Zhao, Z.*; Zheng, Y.*; Fang, Y.*; et al.
Journal of the American Chemical Society, 147(17), p.14054 - 14059, 2025/04
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)We synthesized a crystalline graphane nanoribbon (GANR) via pressure-induced polymerization of 2,2'-bipyrazine (BPZ). By performing Rietveld refinement of in situ neutron diffraction data, nuclear magnetic resonance spectroscopy, infrared spectra, and theoretical calculation, we found that BPZ experienced Diels-Alder polymerization between the
stacked aromatic rings, and formed extended boat-GANR structures with exceptional long-range order. The unreacted -C=N- groups bridge the two ends of the boat, and ready for further functionalization. The GANR has a bandgap of 2.25 eV, with booming photoelectric response (
/
=18.8). Our work highlights that the high-pressure topochemical polymerization is a promising method for the precise synthesis of graphane with specific structure and desired properties.
Che, G.*; Fei, Y.*; Tang, X.*; Zhao, Z.*; Hattori, Takanori; Abe, Jun*; Wang, X.*; Ju, J.*; Dong, X.*; Wang, Y.*; et al.
Physical Chemistry Chemical Physics, 27(2), p.1112 - 1118, 2025/01
Times Cited Count:3 Percentile:65.57(Chemistry, Physical)Pressure-induced polymerization (PIP) of aromatic molecules has emerged as an effective method for synthesizing various carbon-based materials. In this work, PIP of 1,4-difluorobenzene (1,4-DFB) was investigated. high-pressure investigations of 1,4-DFB reveal a phase transition at approximately 12.0 GPa and an irreversible chemical reaction at 18.7 GPa. Structural analysis of the product and the kinetics of the reaction uncovered the formation of pseudohexagonal stacked fluoro-diamond nanothreads with linear growth. Compared to the crystal structures of benzene under high pressure, 1,4-DFB exhibits higher compression along the [001] axis. The anisotropic compression is attributed to the stronger H
interaction along the [01
] axis and the potential compression-inhibiting H
F interactions along the [100] and [010] axes, and it facilitates a possible reaction pathway along the [01
] axis. This work emphasizes the crucial role of functionalization in modulating molecular stacking and influencing the reaction pathway.
Xu, J.*; Lang, P.*; Liang, S.*; Zhang, J.*; Fei, Y.*; Wang, Y.*; Gao, D.*; Hattori, Takanori; Abe, Jun*; Dong, X.*; et al.
Journal of Physical Chemistry Letters (Internet), p.2445 - 2451, 2025/00
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)The Alder-ene reaction is a chemical reaction between an alkene with an allylic hydrogen, and it provides an efficient method to construct the C-C bond. Traditionally, this reaction requires catalysts, high temperatures, or photocatalysis. In this study, we reported a high-pressure-induced solid-state Alder-ene reaction of 1-hexene at room temperature without a catalyst. 1-Hexene crystallizes at 4.3 GPa and polymerizes at 18 GPa, forming olefins. By exploring gas chromatography-mass spectrometry, we discovered that 1-hexene generates dimeric products through the Alder-ene reaction under high pressures. The in situ neutron diffraction shows that the reaction process did not obey the topochemical rule. A six-membered ring transition state including one C-H bond and two alkene
bonds was evidenced by the theoretical calculation, whose energy obviously decreased when compressed to 20 GPa. Our work offers a novel and promising method to realize the Alder-ene reaction at room temperature without a catalyst, expanding the application of this important reaction.
Yang, Q.*; Yang, X.*; Wang, Y.*; Fei, Y.*; Li, F.*; Zheng, H.*; Li, K.*; Han, Y.*; Hattori, Takanori; Zhu, P.*; et al.
Nature Communications (Internet), 15, p.7778_1 - 7778_9, 2024/09
Times Cited Count:9 Percentile:88.46(Multidisciplinary Sciences)Luminescent materials that simultaneously embody bright singlet and triplet excitons hold great potential in optoelectronics, signage, and information encryption. However, achieving high-performance white-light emission is severely hampered by their inherent unbalanced contribution of fluorescence and phosphorescence. Herein, we address this challenge by pressure treatment engineering via hydrogen bonding cooperativity effect to realize the mixture of n--
transitions, where the triplet state emission was boosted from 7% to 40% in isophthalic acid (IPA). A superior white-light emission based on hybrid fluorescence and phosphorescence was harvested in pressure-treated IPA, and the photoluminescence quantum yield was increased to 75% from the initial 19% (blue-light emission). In-situ high-pressure IR spectra, X ray diffraction, and neutron diffraction reveal continuous strengthening of the hydrogen bonds with the increase of pressure. Furthermore, this enhanced hydrogen bond is retained down to the ambient conditions after pressure treatment, awarding the targeted IPA efficient intersystem crossing for balanced singlet/triplet excitons population and resulting in efficient white-light emission. This work not only proposes a route for brightening triplet states in organic small molecule, but also regulates the ratio of singlet and triplet excitons to construct high-performance white-light emission.